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Abstract

As string theory may serve as both, a theory of quantum gravity and a unified
theory of all fundamental forces, it has naturally been one of the most active
research fields of theoretical physics in the last decades. Known for its notorious
difficulty, this report aims to be a simple introduction to bosonic string theory
and one of its beautiful symmetries, T-duality. Unlike many other textbooks or
lecture notes, this report explicitly includes all of the calculation it relies on as
appendices. Hopefully this will help other students like me on their entry to the
world of strings.
Starting off with the general idea and a brief historic background, the classical
string is analysed. The Polyakov action is investigated in terms of its equations
of motion and symmetries. These symmetries are used to fix the flat gauge
in which the equations of motion take a particularly simple form. Following a
naive quantisation procedure the constraints arising from the equations of motion
are imposed as operator conditions on the Hilbert space. This Hilbert space
contains negative norm states, but using the residual conformal symmetry it is
shown how these can be removed. In a second method of quantisation, the BRST
procedure, the original symmetry is replaced by a larger symmetry that is still
present after gauge fixing. It is demonstrated that physical states appear as the
cohomology of the generator of the BRST symmetry. Finally the concept of
compactification is introduced and it is shown how string theories with differing
compactified dimensions are equivalent under T-duality.
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1 Introduction

1.1 The Standard Model

Our current understanding is that there are four forces at play in our universe. Three of
these forces, the electromagnetic, the weak and the strong force are described extremely
well by the Standard Model (SM). Even though the SM is one of the greatest scientific
achievements of the 20th century it has two major shortcomings: First, it has approximately
twenty parameters that have to be entered into the framework manually. While it is surely
desirable to have a predictive theory that does not rely on so many free parameters, the
second, and more severe, problem is that the SM does not include the fourth force, gravity.
However, unlike the SM, which is set in a quantum framework, gravity is described by the
classical theory of General Relativity. Any straightforward attempt to quantise gravity such
that it can be incorporated into the SM faces great difficulties due to divergences in the
ultraviolet. So far there are only very few consistent theories describing quantum gravity,
string theory being one of them.

1.2 String Theory

String theory is a bold venture. It not only describes quantum gravity, but aspires to be an
all-encompassing theory of our universe. Its basic assumption is that our universe is not built
from point-like particles, but from 1-dimensional strings. It postulates that what so far has
been perceived as elementary particles are just different vibrational modes of one fundamen-
tal string. Among the vibrational modes of the string is one that looks like the graviton. This
is amazing as at now point in the theory is gravity put in manually. It naturally arises as
the quantum vibrations of the relativistic string. What seems almost impossible otherwise,
namely quantising gravity, naturally occurs in string theory. String theory therefore serves
as a great candidate for a unified theory of all fundamental forces and potentially even a
complete theory of physics.

In general one distinguishes between open strings - having two endpoints - and closed
strings - having no endpoints. The typical string length can be estimated from the funda-
mental constants entering string theory [1]. These include the speed of light c (string theory
is relativistic), the reduced Planck constant ~ (string theory is a quantum theory) and the
gravitational constant G (string theory includes gravity). They can be combined to form the
Planck length of quantum gravity given by

lp =

(
~G
c3

) 3
2

= 1.6× 10−33cm (1)

which can be thought of as the typical size of a string. Similarly, the Planck mass is mp =

(~c/G)1/2 = 1.2 × 1019 GeV/c2. At energies significantly lower than this strings can be
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Figure 1: (a) A point particle. (b) An open string. (c) A closed string.

accurately approximated as point particles, therefore explaining the success of quantum field
theory for the energies probed at particle accelerators so far.

String theories can be divided into bosonic string theories and superstring theories.
Bosonic string theories live in 26 space-time dimensions (as will be shown multiple times
in this report) and their vibrations only represent bosons. Obviously a theory containing
just bosons can not be an accurate description of nature. Nevertheless bosonic string theo-
ries are still worth studying as they are a lot simpler that superstring theories, while at the
same time containing most of the important concepts.

All realistic string theories are built on superstrings living in 10 space-time dimensions.
Their spectrum includes both bosons and fermions, naturally related to each other by su-
persymmetry. Supersymmetry is therefore absolutely crucial in finding a string theory that
describes our universe.

1.3 A Brief History

Since string theory first arose in the late 60’s, there were periods of very high as well as very
low interest. It is both interesting and illuminating to see why as this naturally introduces
the major discoveries and ideas.

1.3.1 The Early Days

String theory originally arose as an attempt to describe the strong nuclear force in the
late 60’s. What sparked the interest was the fact that string S-matrix scattering amplitudes
exactly matched those found in meson scattering experiments. The inclusion of fermions then
quickly led to the discovery of supersymmetric strings. However, physicists slowly started to
loose interest as Quantum Chromodynamics was recognised as the correct description of the
strong force.
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It was not until 1974 that the interest in string theory grew again as it was shown that
gravity naturally emerged as one of the string states. For the first time string theory was
therefore proposed as a unifying theory of all forces. It had the desirable properties that even
though gravity got modified at short distances (at the order of the Planck scale), at large
distances it exactly matched Einstein’s theory.

1.3.2 The First Superstring Revolution

This was the state of affairs for a couple of years, but again interest in string theory faded as
even though various string theories existed, none of them really reproduced the structure of
the Standard Model. In 1984 in a landmark paper on “Anomaly Cancellation in Supersym-
metric D = 10 Gauge Theory and Superstring Theory” [2] Michael Green and John Schwarz
showed how to cancel mathematical inconsistencies. This set of what later became known
as the First Superstring Revolution and after the dust had settled string theorists were left
with five consistent 10-dimensional superstring theories [3].

10-dimensional theories can be reconciled with our notion of four dimensional spacetime
by assuming that the six extra spatial dimensions are compactified. This means that at every
point in our 4-dimensional spacetime there exists a compactified 6-dimensional space that is
too small to be resolved by experiment. While the simplest compactification for those would
be a 6-dimensional torus, the string dynamics restrict those spaces to take more complicated
forms, so called “Calabi-Yau” manifolds. Even though these exhibit features very similar to
the Standard model, the interest in string theory became weaker yet again. Main reason was
the fact that at this point researchers completely lacked an understanding of non-perturbative
effects which prevented analysing a realistic vacuum of string theory.

1.3.3 The Second Superstring Revolution

Things took a sharp turn around 1995 with the beginning of the “second super string revo-
lution”. The discovery of “dualities”, special symmetries relating different theories to each
other, finally allowed theorists to go beyond the perturbation expansion of string theory and
probe non perturbative features. The three main results of this discovery lead by Edward
Witten [4] and others [5], [6], [7] were the following:

• The five 10-dimensional string theories are related to each other by dualities.

These dualities are S-duality and T-duality. As T-duality is one of the main subjects of this
report, it it briefly explained here. T-duality states that if one theory has a compactified
dimension of radius RA and the other of radius RB they are equivalent to each other if

RARB = (lp)
2, (2)
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where lp is the Planck length [8]. Without going into detail the reason for this duality is that
what is interpreted as a momentum excitation in one theory is interpreted as a winding-mode
excitation in the T-dual theory and if (2) is obeyed the total string energy is the same in
both theories.

In fact going beyond the dualities it was shown that all 10-dimensional theories are just
perturbative expansions of an underlying theory U .

• The theory U also has an 11-dimensional solution called “M-theory”.

Crucially the five 10-dimensional string theories can be derived from M-theory which has
11-dimensional supergravity as its low energy limit.

• U theory allows the existence of extended nonperturbative excitations usually referred
to as “p-branes” where p stands for the number of spatial dimensions of the object.

In 1995 Joseph Polchinski [9] identified probably the most important objects of this type as
D-branes which are physical objects that constrain the motion of open-string endpoints onto
themselves. Studying those quickly suggested new symmetries in M-theory. The most famous
is the AdS - CFT correspondence that was introudced by Juan Maldacena in 1997. Broadly
speaking as a holographic theory it relates physical laws in a volume to different physical
laws on the surface of the volume. In the case of the Ads-CFT correspondence string theory
including gravity inside anti-de Sitter spaces (Ads) is related to standard particle physics
described by conformal field theories (CFT) on the surface of anti-de Sitter spaces [10].

1.3.4 Present Day Research and Outlook

In the last two decades research in string theory has had applications for a variety of fields
ranging from particle physics to understanding black hole entropy and the cosmology of the
early universe.

Advances in particle physics have used the Ads-CFT correspondence to transfer problems
of certain 4-dimensional gauge theories to their equivalent in string theory which are often
easier to handle mathematically. Specifically, this helped understanding the hydrodynamical
properties of the quark-gluon plasma created by colliding gold nuclei in heavy ion colliders
[11].

String theory also provides a statistical mechanics interpretation for black holes [12].
Usually in statistical mechanics properties such as entropy and temperature are determined
by the number of ways one can assemble the constituent parts of the system. However, this
interpretation can not be applied to black holes as understood through Einstein’s gravitation
as those seem to have too few, if any, constituents. String theory in contrast understands
certain black holes as a controlled assembly of strings and D-branes, therefore exactly allowing
for a statistical mechanics interpretation.

Finally string theory can be used to study the inflation period at the very beginning of
our universe. In those regimes classical general relativity breaks down, but string theory
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can still be applied. String theory can therefore help answer questions on the origin of our
universe and thereby solve one of humanities oldest mysteries.

Despite those interesting research applications, doubts have arisen within the physics
community and even among string theorists. String theory is criticised for its lack of dis-
provable predictions, going so far as to suggest that string theory can not be regarded as a
true science. However, history has shown numerous times that whenever it was expected the
least, a ground breaking discovery would pave the way for another ten years of great string
theory research. And who knows maybe the third superstring revolution is just around the
corner.
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2 Classical Particle and String Dynamics

This section serves as an introduction to the mathematical side of string theory
and lays the ground work for all the following sections. It starts with an analysis
of the point-particle action and then generalises the ideas to obtain the simplest
string action, the Nambu-Goto action. The Nambu-Goto action is subsequently
analysed in terms of its equations of motion and symmetries. By introducing an
independent worldsheet metric it is then replaced by the more useful Polyakov
action. Using the local gauge symmetries, the flat gauge is fixed in which the
equations of motion take the form of the two-dimensional wave equations sup-
plemented by an infinite number of additional constraints corresponding to the
residual conformal symmetry.

2.1 Particle Dynamics

Before investigating the dynamics of strings it is useful to analyse the familiar motion of
a massive relativistic point particle as the techniques applied here readily generalise to the
more complicated cases. Throughout the rest of this paper natural units will be used where
c = ~ = G = 1.
Consider a particle that is propagating in d-dimensional space-time with coordinates (t, ~x) =
(x0, x1, ..., xd−1). As it propagates it traces out a one-dimensional world-line that can be
described by the function xµ(τ). In flat Minkowski space an infinitesimal segment of this
worldline is given by

ds2 = −ηµνdxµdxν (3)

where

ηµν =


−1 0

1
. . .

0 1

 . (4)

The action for the particle of mass m is given by the total length of the trajectory traced out
in spacetime [1]:

S[x] = −m
∫
ds = −m

∫
dτ
√
−ηµν ẋµẋν (5)

where a dot represents a derivative with respect to τ . This action is Poincaré-invariant,
meaning that it is both Lorentz invariant and translational invariant. In addition to this
global symmetry the action is reparameterisation invariant. This means that the action is
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unchanged as τ → τ(τ̃) under the requirement that the function τ(τ̃) is smooth and dτ
dτ̃
> 0.

It can be seen directly from

dτ

√
−dx

µ

dτ

dxµ
dτ

= dτ

√
−dx

µ

dτ̃

dxµ
dτ̃

(
dτ̃

dτ

)2

= dτ̃

√
−dx

µ

dτ̃

dxµ
dτ̃

. (6)

This property can be used to set τ = x0 = t which is called the static gauge. In this gauge
the point particle action (5) becomes

S = −m
∫ √

1− v2dt (7)

where ~v = d~x
dt

. Demanding that the action is stationary under arbitrary variations ~x(t) one
obtains the familiar Euler-Lagrange equations

d~p

dt
= 0 , ~p =

m~v√
1− v2

(8)

for a free, massive, relativistic particle.
Even though (5) describes the relativistic point particle a more useful action is achieved by
introducing a worldline metric gττ (τ) and defining e =

√
−gττ such that the new action is

S ′ =
1

2

∫
dτ
(
e−1ẋ2 − em2

)
, (9)

where ẋ2 = ẋµẋνηµν [13]. It can be checked that this action is equivalent to the original
action (5) by inserting the equation of motion of e

ẋ2 + e2m2 = 0 (10)

into (9) to recover the original action. S ′ has the same symmetries as S, Poincaré-invariance
and reparameterisation invariance. However, it is more convenient as it also applies to the
case of massless particles and is easier to quantise in path integral form because of the absence
of the square root.

2.2 String Dynamics

In the previous subsection a point particle, a 0-dimensional object, was analysed in terms of
the 1-dimensional worldline it traces out in spacetime. This concept can be easily generalised
to a 1-dimensional object, a string, being described by a 2-dimensional worldsheet. An open
string traces out a strip in spacetime, while a closed string traces out a tube. One can
parameterise a worldsheet in terms of two parameters(

ξ0, ξ1
)

= (τ, σ) , (11)
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where τ is timelike and σ is spacelike. A mapping function Xµ (τ, σ) which will be called the
string coordinates maps the parameters in parameter space onto the worldsheet in spacetime.
For closed strings these string coordinates are subject to periodic boundary conditions

Xµ (τ, σ + 2π) = Xµ (τ, σ) . (12)

2.2.1 Nambu-Goto String Action

Analogoues to the point particle action a key property of the string action is reparameterisa-
tion invariance. This has to be satisfied as only the embedding of the worldsheet in spacetime
has physical meaning, but not the coordinates that are chosen to parameterise it. In the one
dimensional case this was achieved by making the action proportional to the length of the
worldline. The obvious generalisation of this is to make the string action proportional to the
area of the worldsheet. The area of the worldsheet can be neatly expressed in terms of the
parameters ξi by introducing the induced metric hαβ on the worldsheet which is the pull-back
of the flat metric in Minkowski space [13]

hαβ =
∂Xµ

∂ξα
∂Xν

∂ξβ
ηµν . (13)

The action proportional to the area of the worldsheet is then given by

S = −T
∫
dξ2
√
−h, (14)

where T is a constant of proportionality that can be identified as the string tension [14] and
h = dethab. This action can be written more explicitly by writing out the induced metric as

hαβ =

(
Ẋ2 Ẋ ·X ′

Ẋ ·X ′ X ′2

)
(15)

where Ẋµ = ∂Xµ/∂τ and X ′µ = ∂Xµ/∂σ and a dot-product and a square imply contraction
with the Minkowski metric ηµν . Inserting the entries of the determinant one obtains the
Nambu-Goto action

SNG = −T
∫
dτdσ

√
(Ẋ ·X ′)2 − (Ẋ)2 (X ′)2. (16)

An intuitive way to check that the worldsheet area computed is correct is by considering
how a small area element in parameter space is transformed under the mapping Xµ(τ, σ) [11].
A small rectangle of sides dτ and dσ is mapped onto a parallelogram spanned by the vectors
dvµ1 and dvµ2 which are related to dτ and dσ via

dvµ1 =
∂Xµ

∂τ
dτ , dvµ2 =

∂Xµ

∂σ
dσ. (17)
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Figure 2: The string coordinates Xµ (τ, σ) map the parameters τ and σ onto the worldsheet
in spacetime.

Elementary geometry shows that the area of the parallelogram is

dA =

√
(dv1 · dv1) (dv2 · dv2)− (dv1 · dv2)2. (18)

Inserting the expressions from (17) into (18) one finds that the integrand takes the same form
as in the Nambu-Goto action (16).

2.2.2 Equations of Motion

Proceeding in the same manner as with the relativistic point particle the action of the string
can be varied to find the equations of motion. The variation is found to be

δS =

∫ τf

τi

dτ
[
δXµP σ

µ

]σ1
0
−
∫ τf

τi

dτ

∫ σ1

0

dσδXµ

(
∂P τ

µ

∂τ
+
∂P σ

µ

∂σ

)
(19)

where the generalised momenta are

P τ
µ = −T

(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ√
(Ẋ ·X ′)2 − (Ẋ2)(X ′)2

P σ
µ = −T

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′µ√
(Ẋ ·X ′)2 − (Ẋ2)(X ′)2

.

(20)

As the variation of the action has to vanish for all variations of the motion δXµ both terms
on the right-hand side of (19) have to vanish independently. The second will be 0 if

∂P τ
µ

∂τ
+
∂P σ

µ

∂σ
= 0 (21)
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which is the equation of motion for the relativistic string. The first term on the right-hand
side of (19) will always vanish for closed strings due to periodicity (12). For open strings it
can be set to zero by imposing one of two natural boundary conditions at the endpoints σ∗.
The first are Dirichlet boundary conditions

∂Xµ

∂τ

∣∣∣∣
σ∗

= 0 , µ 6= 0 (22)

that fix the string position throughout the motion, thereby causing the variation δXµ to
vanish at the boundaries. The value µ = 0 must be excluded because as τ flows, time must
flow. The second are free endpoint conditions

P σ
µ (τ, σ∗) = 0 (23)

which always apply for µ = 0.

2.2.3 Symmetries of the Nambu-Goto Action

The Nambu-Goto action has two main symmetries, transformations of Xµ(ξ) under which
the action is invariant, SNG [X ′] = SNG [X] [15]. These are:

1. The D-dimensional Poincaré-group

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ (24)

where Λµ
ν is a Lorentz-transformation and aµ is a translation. This is a global symmetry

as the parameters Λµ
ν and aµ labelling the symmetry transformation do not depend on

the worldsheet coordinates (τ, σ).

2. Reparameterisation invariance, sometimes called diffeomorphism invariance. For new
coordinates (τ ′(τ, σ), σ′(τ, σ)) the transformation is

X ′µ(τ ′, σ′) = Xµ(τ, σ). (25)

This is a local gauge symmetry reflecting the redundancy in the description of the
worldsheet as different parameterisations have no physical meaning [13].

2.2.4 Polyakov Action

The Nambu-Goto action (16) is the equivalent of the particle action (5) in the sense that
it involves derivatives under a square root making it difficult to quantise in a path integral
form [15]. Just like the point particle action it can be simplified by introducing an independent
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worldsheet metric γαβ(ξ). Even though this was first done by Brink, Vecchia and Howe [16]
the resulting action is commonly know as the Polyakov action,

S = −T
2

∫
dξ2
√
γγαβhαβ = −T

2

∫
dξ2
√
γγαβ∂αX

µ∂βX
νηµν (26)

as he was the first to realise its significance for quantisation. Here γ = |detγαβ| and hαβ is the
induced metric (13). The equation of motion by varying the Polyakov action with respect to
γαβ is

Tαβ = ∂αX · ∂βX −
1

2
γαβγ

µν∂µX · ∂νX = 0 (27)

where Tαβ is the stress-energy tensor defined as

Tαβ = − 2π
√
γ

δS

δγαβ
. (28)

One can rewrite (27) as

γαβ = f(τ, σ)∂αX · ∂βX = f(τ, σ)hαβ (29)

where f(τ, σ) is defined as

f−1 =
1

2
γµν∂µX · ∂νX. (30)

Inserting the relation between the worldsheet metric γαβ and the induced metric hαβ (29)
into the Polyakov action (26) the function f drops out of the equation and one recovers the
Nambu-Goto action (16), therefore proving that they are equivalent classically.
The Polyakov action has the following symmetries:

1. D-dimensional Poincaré-invariance:

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ

γ′αβ(τ, σ) = γαβ(τ, σ)
(31)

2. Reparameterisation invariance:

X ′µ(τ ′, σ′) = Xµ(τ, σ)

γ′µν(τ
′, σ′) =

∂σα

∂σ′µ
∂σβ

∂σ′ν
γαβ(τ, σ)

(32)

3. Two-dimensional Weyl invariance:

X ′µ(τ, σ) = Xµ(τ, σ)

γ′αβ(τ, σ) = e2ρ(τ,σ)γαβ(τ, σ)
(33)

for arbitrary ρ(τ, σ).

Compared to the Nambu-Goto action the Polyakov action has an additional symmetry, Weyl
invariance. It is a gauge symmetry and states that the action is unchanged under a local
rescaling of the metric γαβ. Weyl-invariance is also the reason why the function f cancels
when inserting (29) into the Polyakov action (26).
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2.2.5 Fixing a Gauge

The two local symmetries can be used to fix a gauge in which the metric γab takes a particu-
larly simple form. As it is a symmetric 2×2 matrix it originally depended on three functions.
However, the three degrees of freedom (two from 2-dimensional reparameterisation invariance
and one from Weyl invariance) can be used to set the metric equal to the flat metric

γab = ηαβ =

(
−1 0
0 1

)
. (34)

Substituting this gauge into the Polyakov action classically [8] gives

S = −T
2

∫
d2ξηαβ∂αX · ∂βX. (35)

Varying Xµ one finds that the equation of motion is just the free two-dimensional wave
equation:

Ẋ2 −X ′2 = 0. (36)

Also substituting the gauge choice into the equation of motion for γab (27) gives

Tαβ = ∂αX · ∂βX −
1

2
ηαβη

ρσ∂ρX · ∂σX = 0. (37)

This is equivalent to the two constraints

T01 = Ẋ ·X ′ = 0

T00 = T11 =
1

2

(
Ẋ2 +X ′2

)
= 0.

(38)

Thus in the conformally flat gauge the equations of motion of the string is the free wave
equation (36) subject to the Virasoro constraints (38).

2.2.6 Mode Expansions

In order to solve the equations of motion (36) it is best to change to light-cone coordinates

ξ± = τ ± σ (39)

such that then the equation of motion simply becomes

∂+∂−X
µ = 0. (40)

The general solution to this equation is

Xµ = Xµ
L(ξ+) +Xµ

R(ξ−) (41)
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where Xµ
L and Xµ

R are arbitrary functions describing left and right moving waves respectively.
For closed strings obeying Xµ(σ, τ) = Xµ(σ+2π, τ) the solution can be expanded as a Fourier
series [13]

Xµ
L(ξ+) =

1

2
xµ +

1

2
α′pµξ+ + i

√
α′

2

∑
n6=0

1

n
α̃µne

−inξ+

Xµ
R(ξ−) =

1

2
xµ +

1

2
α′pµξ− + i

√
α′

2

∑
n6=0

1

n
αµne

−inξ− .

(42)

where the “Regge slope” α′ was introduced which is related to the string tension by α′ = 1
2πT

.
Even though Xµ

L and Xµ
R are not periodic by themselves due to the ξ+ and ξ− outside of

the infinite sum, their sum Xµ is periodic as required as the σ’s outside of the infinite sum
cancel. Reality of the string coordinates Xµ demands that the integration constants xµ and
pµ are real and

αµn = (αµ−n)∗ , α̃µn = (α̃µ−n)∗. (43)

Furthermore, integrating Xµ and Ẋµ over σ ∈ [0, 2π] one finds that xµ and pµ are indeed the
center of mass position and momentum.

2.2.7 Revisiting the Constraints

In addition to the wave equation the constraints (37) have to be written in terms of light
cone coordinates. Using the general transformation rule for tensors under reparameterisation,
equations (37) become

T++ =
1

2
(T00 + T01) = ∂+X · ∂+X = 0 (44)

and

T−− =
1

2
(T00 − T01) = ∂−X · ∂−X = 0. (45)

One can now evaluate those constraints explicitly to see what conditions they impose on the
momenta pµ and on the Fourier modes αµn and α̃µn.

∂−X
µ = ∂−X

µ
R =

α′

2
pµ +

√
α′

2

∑
n6=0

αµne
−inξ−

=

√
α′

2

∑
n

αµne
−inξ−

(46)

where the sum in the second line is over all integers n and αµ0 is defined as

αµ0 ≡
√
α′

2
pµ. (47)
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Squaring (46), the constraint arising from T−− now reads

(∂−X)2 =
α′

2

∑
m,n

αm · αn−me−inξ
−

= α′
∑
n

Lne
−inξ− = 0 (48)

where Ln was defined as the sum of the oscillator modes,

Ln ≡
1

2

∑
m

αn−m · αm. (49)

Repeating the same procedure for left-moving modes one can define L̃n as

L̃n ≡
1

2

∑
m

α̃n−m · α̃m (50)

where the zero mode was defined to be

α̃µ0 ≡
√
α′

2
pµ = αµ0 . (51)

As can be seen from (48) Ln (and similarly L̃n) have been defined as the Fourier modes of
the constraints. Because all modes are independent of each other, the classical solutions (42)
therefore obey the infinite number of constraints

Ln = L̃n = 0 n ∈ Z. (52)

These constraints corresponds to the residual symmetry, known as the conformal symmetry,
that is still present after the worldsheet metric is set equal to the flat metric. This is because
there still exist certain combinations of reparameterisation invariance and Weyl-rescaling that
preserve the gauge choice of the flat metric [14].
Examining the constraints of L0 and L̃0 explicitly one finds that they include the square of
the space time momentum pµ which in Minkowski space is equal to the square of the rest
mass of a particle, pµp

µ = −M . One therefore finds a formula for the effective mass of a
string in terms of the excited oscillator modes,

M2 =
4

α′

∑
n>0

αn · α−n =
4

α′

∑
n>0

α̃n · α̃−n (53)

The fact that the invariant mass is given as a sum over the right-moving oscillator modes αn
as well as a sum over the left-moving oscillator modes α̃n is known as level matching.
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3 Old Covariant Quantisation

In general when faced with the task of quantising a gauge theory one has one
of two choices to make. Either one can start off by quantising the system and
then imposing the constraints as operator equations on the physical states. Or
the reverse order can be taken: one first imposes the constraints on the system to
find physical solutions and then proceeds to quantise them. In this thesis the first
approach will be taken to quantise the string which is known as “Old Covariant
Quantisation”. Specifically this involves treating all fields Xµ as operators and
invoking equal-time commutation relations. The string spectrum that emerges
resembles that of two simple harmonic oscillators and physical states have to
obey the equivalent of the classical constraints (52). However, a problem with
this Hilbert space is the emergence of negative norm states. After calculating
the Virasoro algebra, the physicality conditions are applied to the ground state
and the first and second excited state. Insisting that those states have positive
norm and conserve conformal symmetry restrictions on the number of space-time
dimensions and the normal ordering constant are found.

3.1 Commutation Relations

As was shown in section 2.2.5 in the flat gauge the action describing the string dynamics
takes the form

S = −T
2

∫
d2ξ∂αX · ∂αX. (54)

It is supported by the two constraints

Ẋ ·X ′ = Ẋ2 +X ′2 = 0 (55)

and appropriate boundary conditions for the open or closed string. As a first step the string
coordinates Xµ and its conjugate momenta Πµ given by

Πµ =
∂L

∂ (∂τXµ)
= −T

2
2∂τXµ = T∂τXµ = TẊµ (56)

are promoted to operator valued fields. As usual in quantum field theory those must obey
the canonical equal-time commutation relations

[Xµ(σ, τ),Πν (σ′, τ)] = iδ (σ − σ′) δµν (57)

[Xµ(σ, τ), Xν (σ′, τ)] = [Πµ(σ, τ),Πν (σ′, τ)] = 0. (58)
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One can use these in combination with the mode expansion (42) to find the commutation
relations for the Fourier modes xµ, pµ, αµm and α̃µm (see Appendix A). They are given by

[xµ, pν ] = iδµν (59)

[αµn, α
ν
m] = [α̃µn, α̃

ν
m] = nηµνδn+m,0 (60)

with all others equal to zero.
In addition to the expected commutation relation for the position and the momentum of the
center of mass of the string, one finds commutation relations similar to those of a harmonic
oscillator. Indeed, by redefining

aµn =
αµn√
n

, aµ†n =
αµ−n√
n

for n > 0, (61)

(and similarly for ãµn and ãµ†n ) one can make this correspondence explicit. It emphasises that
one obtains two infinite towers of creation and annihilation operators corresponding to right-
moving modes and left-moving modes.
Using the commutation relations (60) one can build a Fock space for the string states. This
is done by introducing a ground state |0〉 that is defined to obey

αµn|0〉 = α̃µn|0〉 = 0 for n > 0. (62)

Besides the oscillator level, string states have a second degree of freedom, the center of mass
momentum. This must be specified as well to fully determine a string state, e.g. the ground
state with momentum pµ is denoted as |0; pµ〉. Any state can now be obtained by acting with
any number of creation operators αµn and α̃µn with n > 0 on the ground state,(

αµ1−1
)nµ1 (αµ2−2)nµ2 . . . (α̃ν1−1)nν1 (α̃ν2−2)nν2 . . . |0; p〉. (63)

3.2 Ghosts

When exploring the Fock space constructed one quickly encounters the problem that some
states have negative norm. These states are usually referred to as ’ghosts’. They arise
because of the minus sign coming from the Minkowski metric in the time components of the
commutation relations,

[
α0
n, α

0†
n

]
= −n. For n > 0 a state α0†

n |0〉 therefore has negative norm
as 〈

0
∣∣α0

nα
0†
n

∣∣ 0〉 =
〈
0
∣∣[α0

n, α
0†
n

]∣∣ 0〉 = −n (64)

As those states would have negative probabilities associated with them, one has to ensure
that they can not be produced in any physical process. The space of physically allowed states
is therefore a subspace of the complete Fock space, excluding the negative-norm states.
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3.3 Constraints

As was shown in section 2.2.7 the classical constraints lead to the vanishing of the Fourier
modes of the stress energy tensor, Ln = L̃n = 0, where

Ln =
1

2

∑
m

αn−m · αm. (65)

When passing to the quantum theory the αm are promoted to operators, therefore potentially
causing ordering ambiguities. From the commutation relations one can see that for n 6= 0,
the operators αm and αn−m commute, so that in this case Ln is clearly defined. In the
case, however, that n = 0 those ordering ambiguities do arise. Those ambiguities manifest
themselves in terms of a constant that arises when commuting the αµn past each other in L0.
Therefore, at this stage one simply defines L0 to be given by the normal-ordered expression

L0 ≡
1

2
α2
0 +

∞∑
n=1

α−n · αn (66)

and includes a constant a in every expression of L0.
Instead of imposing all classical constraints as operator equations on the Hilbert space it is
sufficient to require that the matrix elements of Ln and L̃n vanish when inserted between two
physical states |phys〉 and |phys′〉,

〈phys′|Ln|phys〉 = 〈phys′|L̃n|phys〉 = 0. (67)

Because L†n = L−n, (67) is always fulfilled if

Ln|phys〉 = L̃n|phys〉 = 0 for n > 0 (68)

and including a for the expression of L0 and L̃0

(L0 − a)|phys〉 = (L̃0 − a)|phys〉 = 0. (69)

In a later section these conditions will be systematically applied to the vacuum as well as a
general first and second order excited state, giving restrictions on the dimensions of space
time and the constant a.
Before calculating the value of a it is useful to understand its physical significance. By
combining (69) with the equation for the classical level matching (53) one obtains

M2 =
4

α′

(
−a+

∞∑
m=1

α−m · αm

)
=

4

α′

(
−a+

∞∑
m=1

α̃−m · α̃m

)
. (70)

This shows that a shifts the mass spectrum of the string. Additionally, the level matching
in the quantum theory implies that there is an equal number of left and right moving modes
on a string.
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3.4 Virasoro Algebra

One can evaluate the commutator [ανm, Ln] by explicitly inserting the expression for Ln (see
Appendix B). One finds that

[ανm , Ln] = mανm+n (71)

holds for all m and n. One can now use this relation to evaluate the commutator [Lm, Ln].
For this note that

Lm =
1

2

∑
: αµm−kα

µ
k : ∀m ∈ Z. (72)

where :: imply normal ordering, such that αm are moved to the right for m > 0 and to the left
for m < 0. This holds true because L0 was originally defined to be normal-ordered and the αm
in the other Ln commute and can therefore be brought into normal-ordered form. Dropping
space-time indices for convenience, the commutator of Lm and Ln can be calculated.1 Taking
particular care of the normal ordering one finds [17],

[Lm, Ln] =
1

2

(∑
k≥0

αm−kαkLn +
∑
k<0

αkαm−kLn −
∑
k≥0

Lnαm−kαk −
∑
k<0

Lnαkαm−k

)
=

1

2

(∑
k≥0

αm−k (Lnαk + kαk+n)− (αm−kLn − (m− k)αm+n−k)αk

+
∑
k<0

αk (Lnαm−k + (m− k)αm−k+n)− (αkLn − kαn+k)αm−k
)

=
1

2

(∑
k≥0

(
(m− k)αm+n−kαk + kαm−kαn+k

)
+
∑
k<0

(
kαk+nαm−k + (m− k)αkαm+n−k

))
(73)

If m + n 6= 0 then the αm commute in all four terms. One can therefore switch the order of
the αm in the last two terms and then add pairwise terms one and four and two and three
to obtain two sums over all k.

(73) =
1

2

(
∞∑

k=−∞

(m− k)αm+n−kαk +
∞∑

k=−∞

kαm−kαn+k

)
(74)

Replacing k with k − n one finds the commutator as

[Lm, Ln] =
1

2

∞∑
k=−∞

(m− n)αm+n−kαk = (m− n)Lm+n. (75)

1This calculation was deliberately not relegated to the appendix, as it is instructive to see how the quantum
anomaly, that is so crucial to string theory, arises.
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In the case that m+ n = 0 the commutators do not vanish and an extra contribution arises
as one ensures normal ordering. Assuming m > 0 (an analogues argument can be made for
the case m < 0) the only term that is not normal ordered is the second term. Here, the order
has to be switched for all values 0 ≤ k ≤ m. From the commutation relations (60) this gives
rise to a factor m− k, such that the extra terms is:

+
1

2

m∑
k=1

k(m− k)δm+n. (76)

Using standard formulae for the sum of integers and the sum of squares this sum evaluates
to

1

2

m∑
k=1

k(m− k) =
1

4
m2(m+ 1)− 1

12
m(m+ 1)(2m+ 1) =

1

12
m(m+ 1)(m− 1). (77)

Therefore arriving at the very important Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
1

12
m
(
m2 − 1

)
δm+n. (78)

The only case that was not checked explicitly above is the case m = n = 0. However, from
(73) one can see that in this case the commutator vanishes which is in accordance with the
Virasoro algebra.

3.5 State Analysis

After evaluating the commutation relations, one can use those to see what conditions the
constraints (68) and (69) impose on a and the space time dimensions. This will be done by
applying the Ln on the ground state and the first and second excited state.

3.5.1 Ground State

Starting with the ground state |0; p〉 one sees that applying Ln with n > 0 is identically 0
as every term in the sum will include an annihilation operator that annihilates the ground
state. Applying L0, however, one finds

(L0 − a)|0; p〉 = (
1

2
α2
0 +

∞∑
n=−∞

α−n · αn − a)|0; p〉 = (
α′

4
p2 − a)|0; p〉 = 0. (79)

Therefore the ground state of a string has mass M2 = − 4
α′
a. Later it will be shown that a = 1

such that the ground state corresponds to a Tachyon which is a particle that has negative
mass-squared. Without going into details the minus sign means that one is expanding around
a maximum of the potential for the Tachyon field rather than a minimum. This is problematic
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as it indicates that there might not exist a time-independent stable solution to bosonic string
theory [13]. Despite this obvious flaw bosonic string theory is still worth studying as all the
concepts can be carried over directly to super string theory which does not suffer from this
problem.

3.5.2 First Excited State

Applying the physicality conditions on a general first excited state |1〉 = ξνα
ν
−1|0; p〉 one finds

(L0 − a)|1〉 = 0 → α′

4
p2 = a− 1 (80)

L1|1〉 = 0 → ξ · p = 0. (81)

as shown in Appendix C. Operating with Ln when n > 1 on the first excited state will not
provide any further constraints as those equations are trivially zero. However, one can obtain
an extra condition by considering the norm of the first excited state |1〉.

〈1|1〉 = 〈0; p|αµ1ξ∗µξναν−1|0; p〉
= ξ∗µξν〈0; p|αν−1α

µ
1 + ηµν |0; p〉

= ξ∗ · ξ
(82)

As the first excited state is a physical state its norm must be greater or equal to zero, such
that

ξ∗ · ξ ≥ 0. (83)

This implies that ξ is space-like or light-like. Because of (81) the momentum p must therefore
be time-like or light-like, so that p2 ≤ 0. Using (80) this restricts a:

a ≤ 1. (84)

One can go even further than this by looking at the symmetry that is left after choosing
a particular value of a. After fixing the gauge to the flat metric there is still a residual
symmetry left over. This conformal symmetry is generated by L−n (for n > 0 ). Therefore,
when quantising the theory one should ensure that this symmetry is still present. Specifically
for the first excited state one should still be able to make an identification between two first
excited states |1〉 and |1′〉 where |1〉 is defined as before and |1′〉 is

|1′〉 = |1〉+ γL−1|0; p〉. (85)

This state can be rewritten as

|1′〉 = ξµα
µ
−1 +

γ

2

√
α′

2
pµα

µ
−1|0; p〉

≡ ξ′µα
µ
−1|0; p〉

(86)
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where ξ′µ was defined as ξ′µ = ξµ + γ
2

√
α′

2
pµ. As this state is physical the same conditions (80)

and (81) must still hold. Checking ξ′ · p gives

ξ′µp
µ = ξµp

µ + γp2 = γp2 =
4

α′
γ(a− 1) (87)

This is only equal to 0 as required if either γ = 0 or a = 1. But γ = 0 implies that there are
no possible identifications, therefore destroying the conformal symmetry. This means

a = 1 . (88)

3.5.3 Second Excited State

Analogous to the first excited state one applies the conditions for a physical state on a general
second order excited state

|2〉 = ξµνα
µ
−1α

ν
−1|0; p〉+ ξ̃µα

µ
−2|0; p〉. (89)

The full calculations can be found in Appendix C.

(L0 − a)|2〉 = 0 → p2 = −2 (90)

L1|2〉 = 0 → ξµνp
ν + ξ̃µ = 0 (91)

L2|2〉 = 0 → ξµνη
µν + 2ξ̃µp

µ = 0 (92)

Again using the conformal symmetry argument demand that the sum of a general second
order excited state and a second order conformally invariant state is still a physical state.
Such a second order conformally invariant state is given by

|χ〉 = L−1|1; p〉+ γL−2|0; p〉 = πµL−1α
µ
−1|0; p〉+ γL−2|0; p〉 (93)

One can expand |χ〉 to write it in a form similar to |2〉

|χ〉 = πµ(αµ−1L−1 + αµ−2)|0; p〉+ γ
1

2
(αµ−2α0µ + αµ−1α−1µ + αµ0α−2µ)|0; p〉

=
[
πµ(αµ−1

1

2
(αν−1α0ν + αν0α−1ν) + αµ−2)|0; p〉+ γ

1

2
(pµα

µ
−2 + αµ−1α−1µ)

]
|0; p〉

=
[
(
1

2
πµpν +

γ

2
ηµν)α

µ
−1α

ν
−1 + (πµ +

1

2
γpµ)αµ−2

]
|0; p〉

=
[
∆ξµνα

µ
−1α

ν
−1 + ∆ξµα

µ
−2

]
|0; p〉

(94)

where in the last step ∆ξµν and ∆ξµ were defined as

∆ξµν =
1

2
(πµpν + γηµν) and ∆ξµ = πµ +

1

2
γpµ (95)
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Now one has to check that

|2′〉 = |2〉+ |χ〉 =
[
(ξµν + ∆ξµν)α

µ
−1α

ν
−1 + (ξµ + ∆ξµ)αµ−2

]
|0; p〉

≡
[
ξ′µνα

µ
−1α

ν
−1 + ξ′µα

µ
−2

]
|0; p〉

(96)

is still a physical state. Rather than checking the physicality conditions (90), (91) and (92)
for the primed fields ξ′µν and ξ′µ, one can use the fact that the physicality conditions are linear
and instead check them for ∆ξ′µν and ∆ξ′µ as this shortens the algebra.
Inserting (95) into (91) one finds

∆ξµνp
ν + 2∆ξ̃µ =

1

2
(πµpν + γηµν)p

ν + 2πµ + γpµ = −2πµ +
3

2
γpµ = 0 (97)

where (90) was used. Multiplying by pµ one finds that

πµp
µ = −6γ. (98)

Repeating the same for (92) and using (90) and (98) one gets

∆ξµνη
µν + ∆ξ̃µp

µ =
1

2
(πµpν + γηµν)η

µν + (πµ +
1

2
γpµ)pµ

=
1

2
πµp

µ +
γ

2
D + πµp

µ − 4γ

=

(
D

2
− 13

)
γ = 0

(99)

where D is the number of space time dimensions. Again γ should not vanish as this would
destroy the conformal symmetry. Therefore one obtains the famous restriction on the number
of space time dimensions in bosonic string theory:

D = 26 (100)

3.6 No-Ghost Theorem

Even though this is not shown here it turns out that setting D = 26 and a = 1 preserves the
conformal symmetry for states of all excited levels. This effectively removes all ghost states
from the theory as every negative norm state can be identified with a positive or zero norm
state by conformal symmetry. The interested reader can find a full proof of this in a paper
by Goddard and Thorn [18].
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4 BRST Quantisation

A common challenge when working with gauge theories is the emergence of
unphysical degrees of freedom in the Lagrangian. They can be removed by fixing
a gauge, but the problem is that this destroys gauge invariance. The idea of
BRST quantisation is to replace the original symmetry by a new symmetry, the
BRST symmetry, which is still present after the gauge is fixed. This is done
by introducing new ghost2 and anti-ghost fields that allow constructing a BRST
invariant action. The operator that generates this symmetry is called BRST
differential, Q, and has the very important property that it is nilpotent, Q2 = 0.
The reason why this is so important is that even though introducing the new fields
has greatly enlarged the Hilbert space the subspace corresponding to physical
states simply appears as the cohomology of Q.

4.1 BRST Action

While the following is far from a complete derivation of the BRST action, it aims to moti-
vate the different terms and the introduction of the new fields. As stated above the original
gauge symmetry is replaced by the BRST symmetry which encompasses the original gauge
symmetry. Therefore, looking at the infinitesimal transformations, rather than having repa-
rameterisation invariance given by

δXµ(ξ) = εα∂αX
µ (101)

where εα is some small function, let the transformation be

δBX
µ(ξ) = εcα∂αX

µ (102)

where cα is a ghost field and δB denotes an infinitesimal BRST transformation. In terms of
the metric this gives the infinitesimal transformation,

δγmn = ∇mcn +∇ncm. (103)

Similarly introduce a second ghost field c̃ for the Weyl transformation, such that

δγmn = εc̃γmn. (104)

Under a full BRST transformation γmn therefore changes as

δBγmn = ε(∇mcn +∇ncm + c̃γmn). (105)

2These are not to be confused with the negative norm states appearing in section 3.2. They are simply
new fermionic fields necessary to maintain gauge invariance.
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Now one can add a gauge fixing term to the Polyakov action. Let the gauge fixing be

Fmn ≡ γmn − ηmn = 0. (106)

such that

S = SP −
i

4π

∫
d2ξ
√
γFmnB

mn (107)

where Bmn takes the role of a Lagrange multiplier and therefore δBB
mn = 0 . The presence

of
√
γ ensures that the volume element

∫
d2ξ
√
γ is invariant under BRST symmetry as it was

invariant under normal gauge symmetry which is a special case of BRST symmetry. By the
same argument the Polyakov action is also invariant under a BRST transformation. However,
the term FmnB

mn is not invariant. Therefore in order to make the whole action invariant,
one has to add a third term that cancels the contribution from the second term. For this
an anti-ghost field bmn is introduced whose variation is defined to be δBb

mn = εBmn. Also
defining the variation of the gauge fixing δBFmn = εΛmn the third term should be

i

4π

∫
d2ξ
√
γΛmnb

mn. (108)

When the other infinitesimal transformations are given by

δBcm = εLccm = ε(cg∂gcm + cg∂nc
g) (109)

δB c̃ = εLcc̃ = εcg∂g c̃ (110)

where Lc is the Lie derivative with respect to c, the whole action

S = SP −
i

4π

∫
d2ξ
√
γFmnB

mn +
i

4π

∫
d2ξ
√
γΛmnb

mn (111)

is therefore invariant under a BRST transformation. This is because

δBΛmn =
1

ε
δBδBFmn = 0 (112)

by nilpotency of Q.
Now inserting for Fmn and Λmn one gets

S = SP −
i

4π

∫
d2ξ
√
γ(γmn − ηmn)Bmn +

i

4π

∫
d2ξ
√
γ(∇mcn +∇ncm + c̃γmn)bmn (113)

Note that both Bmn and c̃ have algebraic equations of motion. By construction the Bmn

equation of motion gives the gauge fixing γmn − ηmn = 0. The equation of motion from
c̃ gives bmnγmn = 0 such that bmn must be traceless. Inserting those relations the action
simplifies to

S = SP +
i

4π

∫
d2ξ
√
γ(∂mcn + ∂ncm)bmn = SP +

i

2π

∫
d2ξ
√
γγαm∂αc

nbmn (114)
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as the covariant derivatives can be replaced by partial derivatives when working in the flat
frame. In light cone coordinates after an integration by parts the ghost action reads

Sg = − i
π

∫
d2ξ(c+∂+b++ + c−∂+b+− + c+∂−b−+ + c−∂−b−−). (115)

Using the fact that bαβ is traceless and symmetric further simplifications can be made. Van-
ishing of the trace implies −b−+ − b+− = 0. Because of the symmetry however, b+− = b−+,
which combined gives b+− = b−+ = 0. Therefore, the ghost action simplifies to

Sg = − i
π

∫
d2ξ(c+∂+b++ + c−∂−b−−) =

i

π

∫
d2ξ(c+∂−b++ + c−∂+b−−) (116)

which agrees with the textbook by Green, Schwarz and Witten [14].

4.2 Stress-Energy Tensor

Using the formula for the world-sheet energy momentum tensor

Tαβ = − 2π
√
γ

δS

δγαβ
(117)

one can find the contribution from the ghost action to the total energy-momentum tensor.
Starting from the ghost action in the form

Sg =
i

2π

∫
d2ξ
√
γγαm∇αc

nbmn (118)

and taking care when varying the Christoffel symbols arising in the covariant derivative
as shown in Appendix D, this evaluates to

T
(c)
αβ = − i

2

[
(∇αc

µ)bβµ + (∇βc
µ)bαµ − γαβγmn(∇mc

µ)bnµ + cν∇ν(bαβ)
]
. (119)

For example T
(c)
−− in the conformal gauge is given by

T
(c)
−− = − i

2

[
(∂−c

µ)b−µ + (∂−c
µ)b−µ − γ−−γmn(∂mc

µ)bnµ + cν∂ν(b−−)
]

= − i
2

[
2(∂−c

+)b−+ + 2(∂−c
−)b−− + c+∂+b−− + c−∂−b−−

]
.

(120)

4.3 Equations of Motion, Commutation Relations and Mode Ex-
pansions

In order to find the conjugate momenta of the fields one can rewrite the ghost action

Sg =
i

π

∫
d2ξ
[
c+

1

2
(∂τ − ∂σ)b++ + c−

1

2
(∂τ + ∂σ)b−−)

]
(121)
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and using the definition of the conjugate momenta

Πµ =
∂L

∂ (∂τXµ)
(122)

one can read off the conjugate momenta:

Π(c+) = Π(c−) = 0 (123)

Π(b++) =
i

2π
c+ and Π(b−−) =

i

2π
c− (124)

Using those one finds the equal time anti-commutation relations for the ghost fields{
b++(σ, τ) , c+(σ′, τ)

}
= 2πδ(σ − σ′){

b−−(σ, τ) , c−(σ′, τ)
}

= 2πδ(σ − σ′)
(125)

with all others equal to zero.
Varying the ghost action (116) with respect to the four fields, and using integration by parts
when varying with respect to b++ and b−−one immediately finds the four equations of motion

∂−c
+ = ∂−b++ = 0

∂+c
− = ∂+b−− = 0.

(126)

Just as in the case of left and right moving coordinates Xµ, c+ and c− have independent
mode expansions.

c+ =
+∞∑

n=−∞

c̃ne
−in(τ+σ) (127)

c− =
+∞∑

n=−∞

cne
−in(τ−σ) (128)

Similarly,

b++ =
+∞∑

n=−∞

b̃ne
−in(τ+σ) (129)

b−− =
+∞∑

n=−∞

bne
−in(τ−σ) (130)
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From these one can find the anticommutation relations for bm and cm. Note that

1

2π

∫ 2π

0

dσeimσb++(σ, τ = 0) =
1

2π

+∞∑
n=−∞

bn

∫ 2π

0

dσeimσe−inσ

=
1

2π

+∞∑
n=−∞

bn2πδn−m

= bm

(131)

and similarly for cm. Therefore,{
cm , bn

}
=

∫ 2π

0

∫ 2π

0

dσdσ′
1

4π2
eimσeinσ

′{
b++(σ, τ) , c+(σ′, τ)

}
=

1

2π

∫ 2π

0

dσei(m+n)σ = δm+n.

(132)

Also {
cm , cn

}
=
{
bm , bn

}
= 0. (133)

4.4 Extracting Fourier Modes

Ultimately again the goal is to arrive at the Virasoro algebra. For that one needs to extract
the ghost contribution to the Ln out of the ghost stress-energy tensor. First however note
that one can simplify the ghost stress-energy tensor (120) using the equations of motion
(126), such that

T
(c)
−− = − i

2

[
2(∂−c

−)b−− + c−∂−b−−

]
. (134)

Now for the closed string (at τ = 0)

L(c)
n = T

∫ 2π

0

dσe−inσT
(c)
−− =

∞∑
m=−∞

(n−m) : bn+mc−m : (135)

as shown in Appendix E.

4.5 Commutation Relations for Fourier Modes

One again has to evaluate the commutator of the ghost contribution to the Ln operators. As
before this will be of the type[

L(c)
m , L

(c)
n

]
= (m− n)L

(c)
m+n + Ac(m)δm+n. (136)
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Just as in the Old Covariant Quantisation one could calculate the anomaly by explicitly
evaluating the commutator, carefully ensuring normal ordering during the procedure. This
calculation however is very tedious which is why a different approach will be used here that
follows [14] and evaluates Ac(m) indirectly.
Looking at (136) for n = m = 0 one sees that A(0) = 0. Also taking n = −m and comparing
to the commutator in reverse order one sees A(m) = −A(−m), so that it is sufficient to
evaluate A(m) for positive m. From the Jacobi identity[

L
(c)
k ,
[
L(c)
n , L

(c)
m

]]
+
[
L(c)
n ,
[
L(c)
m , L

(c)
k

]]
+
[
L(c)
m ,
[
L
(c)
k , L

(c)
n

]]
= 0 (137)

one finds that for k + n+m = 0

(n−m)Ac(k) + (m− k)Ac(n) + (k − n)Ac(m) = 0. (138)

Setting k = 1 and m = −n− 1 in (138) one can obtain the recursion relation for A(n)

Ac(n+ 1) =
(n+ 2)Ac(n)− (2n+ 1)Ac(1)

(n− 1)
. (139)

All Ac(n) can be determined in terms of Ac(1) and Ac(2) and in fact the general solution can
be written as

Ac(m) = c3m
3 + c1m (140)

where c1 and c3 are constants.
These two constants can be evaluated by calculating the expectation value of (136) for
n = 1, 2 for a suitably chosen state. The most convenient choice is the ground state |0; 0〉.
Evaluating the matrix element 〈0; 0|[L(c)

1 , L
(c)
−1]|0; 0〉 one gets Ac(1) = −2. Similarly for

〈0; 0|[L(c)
2 , L

(c)
−2]|0; 0〉 one finds Ac(2) = −17 as shown in Appendix F. These two relations

suffice to determine the constants c1 and c3 in (140) such that

Ac(m) =
1

6

(
m− 13m3

)
. (141)

After evaluating the ghost contribution one can now define the complete Virasoro gener-
ators corresponding to both Polyakov and ghost action

Lm = L(α)
m + L(c)

m − aδm. (142)

Here the L0 operator was shifted by −a such that the new constraint is L0 = 0. This gives
rise to an extra term in the anomaly of 2am such that the full anomaly is given by

A(m) =
D

12

(
m3 −m

)
+

1

6

(
m− 13m3

)
+ 2am. (143)
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4.6 BRST Operator and Ghost Number

Besides the BRST operator Q there is a second conserved quantity in the system, the ghost
number U . Both of these can be derived as integrals over conserved currents [14]. The BRST
current is given by

JB− = 2c−
(
T

(α)
−− +

1

2
T

(c)
−−

)
(144)

where JB+ is obtained by replacing − by +. T
(α)
−− is given in (45) and T

(c)
−− in (134). The ghost

number current is defined as
J− = c−b−− (145)

where again J+ is obtained via − ↔ +. Using the conservation of energy and momentum
∂+T−− + ∂−T+− = 0 which for the traceless case reduces to ∂+T−− = 0 and the equations of
motion of b and c (126) one can show that these currents are indeed conserved,

∂+J
B
− = ∂+J− = 0. (146)

The conserved charges corresponding to these currents are the BRST charge

Q =
1

2π

∫ 2π

0

dσ
(
JB+ + JB−

)
(147)

and the ghost number

U =
1

2π

∫ 2π

0

dσ (J+ + J−) (148)

Focussing on the right-moving ghosts and oscillators, the BRST charge can be calculated as
(see Appendix G)

Q =
∞∑
−∞

L
(α)
−mcm −

1

2

∞∑
−∞

(m− n) : c−mc−nbm+n : −ac0. (149)

Looking at the definition of L
(c)
n this can be written as

Q =
∞∑
−∞

:

(
L
(α)
−m +

1

2
L
(c)
−m − aδm

)
cm : . (150)

Obtaining Q in this form is important as it allows one to check that Q is indeed nilpotent,
which is absolutely crucial for the BRST mechanism. One can calculate

Q2 =
1

2
{Q,Q} =

1

2

∞∑
−∞

([Lm, Ln]− (m− n)Lm+n) c−mc−n (151)
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where Ln is given by (142). Clearly this is only 0 if the full Virasoro algebra is anomaly free.
From (138) one can see that this is only the case for D = 26 and a = 1, therefore confirming
the values obtained with the Old Covariant Quantisation.

Analogously to before one can integrate over the ghost number current to obtain the ghost
number (see Appendix G),

U =
∞∑

n=−∞

: cnb−n : (152)

where again this expression only includes right-moving ghosts. It is instructive to write out
U in an explicitly normal ordered form

U =
1

2
(c0b0 − b0c0) +

∞∑
n=1

(c−nbn − b−ncn) + a′ (153)

where the minus signs appear because cn and b−n anti-commute and a new normal ordering
constant a′ was introduced. Even though this is not shown here both c0 and b0 commute
with the Hamiltonian, such that the ground state has a degeneracy. Let this degeneracy be
described by two states | ↑〉 and | ↓〉 that are annihilated respectively by c0 and b0. Using
the anti-commutation relations c20 = b20 = 0 and {c0, b0} = 1 the ground states must obey

c0| ↓〉 = | ↑〉 , b0| ↑〉 = | ↓〉. (154)

From (153) one can see that the ghost numbers of | ↑〉 and | ↓〉 obey U↑ = U↓ + 1. However,
because of the normal ordering constant a′, this relation does not directly fix the individual
values. Nevertheless one can choose a′ = 0 as this is the most symmetric choice giving U↑ = 1

2

and U↓ = −1
2
.

The reason why the ghost number was investigated so thoroughly here is that it is important
for finding the physical states in the enlarged Hilbert space. As a physical state |ψ〉 is free
of ghosts it should be annihilated by all ghost and anti-ghost annihilation operators,

cn|ψ〉 = bn|ψ〉 = 0, n > 0 (155)

One would also expect it to be in one of the two ghost ground states | ↑〉 or | ↓〉. At this point
there is no obvious reason to choose one over the other. This however is not just a matter of
convention as the ghost field c and anti-ghost field b do not enter the theory symmetrically.
Choosing | ↓〉 a physical state would have ghost number −1

2
and be annihilated by b0. For this

choice something interesting happens. The condition of BRST invariance Q|χ〉 = 0 reduces
to

0 = Q|χ〉 =

(
c0

(
L
(α)
0 − 1

)
+
∑
n>0

c−nL
(α)
n

)
|ψ〉 (156)

which can be seen from (149). These conditions are exactly the conditions on a physical
state found in the Old Covariant Quantisation which therefore confirms that states with
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ghost number −1
2

are indeed physical states.3

However, just like in the Old Covariant Quantisation one finds that certain states are equiv-
alent to each other. More specifically adding Q|λ〉 to a physical state |ψ〉 will not change the
overlap with any other physical state |φ〉 as 〈φ|(|ψ〉+Q|λ〉) = 〈φ|ψ〉 as |φ〉 is annihilated by
Q. One can therefore identify |ψ〉+Q|χ〉 with |ψ〉 such that

Hphysical =
{
|ψ〉 ∈ H : Q|ψ〉 = 0 , U |ψ〉 = −1

2
|ψ〉
}
/
{
|ψ〉 ∼ |ψ〉+Q|χ〉

}
. (157)

which means that in the BRST prescription physical states correspond to cohomology classes
of ghost number −1

2
.

3States with ghost number 1
2 are annihilated by c0 instead of b0 and this means that BRST invariance

does not reproduce all the physicality conditions.
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5 Compactification and T-duality

This section will look at how the previous analysis of strings can be adapted to
the case when they are moving in a compactified dimension. It will be shown that
the change in boundary conditions of the string coordinates leads to the emergence
of winding modes and quantisation of momentum. Those two are linked by a
remarkable symmetry, T-duality, which describes that they can be interchanged if
one inverts the radius of the compactified dimension. Gauging the string action in
a curved background the Buscher rules are derived which state how the metric and
background field transform under a T-dual transformation. Finally the analysis
is generalised to compactification on a d-dimensional torus and selected elements
of the group generating T-dual transformations are examined.

5.1 1-Dimensional Compactification

It was shown thoroughly in previous sections that string theory requires the existence of 26
space-time dimensions. As it seems impossible to have multiple time-like dimensions, the 22
extra dimensions are thought to be compactified spatial dimensions. Compactified means
that they are curled up in space and periodic, for example the simplest one-dimensional
compactification is a circle and the effect this has on the string spectrum will be analysed in
the following.
Assume the string is moving in the background R1,24×S1 where the compactified dimension
is a circle of radius R and which will be relabelled as Y = X25. This changes the string
dynamics in two ways:
First, it modifies the boundary condition of the mode expansion along the circle. Rather
than requiring Y (σ + 2π) = Y (σ) it is sufficient to require

Y (σ + 2π) = Y (σ) + 2πwR m ∈ Z. (158)

The integer w is the number of times the string wraps around S1 and is usually referred to
as the winding number.
The second modification can be seen by demanding that the string wavefunction must be
single valued along the circle,

ψ(X i, Y + 2πR) = ψ(X i, Y ) (159)

Noting that the wavefunction includes the factor eip·X this means that eip
Y 2πR = 1 such that

the string momentum along the circle is quantised

pY =
n

R
, n ∈ Z. (160)
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These two changes only affect the mode expansion for the string coordinates on the circle.
The others simply remain (42). For Y the general mode expansion is

Y (σ, τ) = y +
α′n

R
τ + wRσ + oscillator modes (161)

which ensures that both (158) and (160) are obeyed. Once again Y can be split up into a
left and right moving part, Y (σ, τ) = YL (ξ+) + YR (ξ−), where

YL
(
ξ+
)

=
1

2
y +

1

2
α′pLξ

+ + i

√
α′

2

∑
n6=0

1

n
α̃25
n e
−inξ+

YR
(
ξ−
)

=
1

2
y +

1

2
α′pRξ

− + i

√
α′

2

∑
n6=0

1

n
α25
n e
−inξ−

(162)

and the left and right moving momenta were introduced as

pL =
n

R
+
wR

α′
, pR =

n

R
− wR

α′
. (163)

One can now determine how the mass spectrum looks to an observer in the 25 non-compact
dimensions. The mass of the particle is given by

M2 = −
24∑
µ=0

pµp
µ (164)

As before the conditions on L0 and L̃0 fix the mass. Starting from L0 − a = 0 and using
a = 1 one finds

L0 − 1 =
1

2
α2
0 +

∞∑
m=1

α−m · αm − 1

=
α′

2

24∑
µ=0

pµp
µ +

α′

2
p2R +

∞∑
m=1

α−m · αm − 1

= −α
′

2
M2 +

α′

2
p2R +

∞∑
m=1

α−m · αm − 1 = 0.

(165)

Therefore, defining

N ≡
∞∑
m=1

α−m · αm (166)

and rearranging one finds,

M = p2R +
4

α′
(N − 1) (167)

37



Repeating the same exercise for the left-moving modes one also finds

M = p2L +
4

α′
(Ñ − 1) (168)

where

Ñ ≡
∞∑
m=1

α̃−m · α̃m. (169)

Adding and subtracting (167) and (168) gives

N − Ñ = nw (170)

and

M2 =
n2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2). (171)

Therefore both, the momentum along the circle as well as the winding modes, contribute to
the mass of the string. If n > 0 the momentum gives a contribution of n

R
and for w > 0 the

winding modes contribute with 2πwRT , where T = 1/2πα′ is the tension of the string [13].
It is useful to investigate the behaviour of the mass in the limit of a very large and very

small radius R. As R→∞ the winding modes proportional to R/α′ become very heavy and
energetically unfavourable. The momentum modes, however, become very light and start to
form a continuum as they would for a non-compact dimension. This was of course expected
as the limit R → ∞ is just a non-compact dimension. Also pL = pR such that one recovers
exactly the non-compactified mode expansions.
An interesting behaviour arises as R→ 0. This time the momentum states become infinitely
heavy and decouple, and the winding modes start to form a continuum. Mysteriously the
energy spectrum looks as if an extra uncompactified dimension has appeared!

5.2 T-duality

The emergence of an extra non-compact dimension stands in marked contrast to what would
occur in quantum field theory and only occurs in string theory. It can be explained with the
concept of T-duality. T-duality describes a remarkable property of (171): the mass spectrum
remains invariant under the simultaneous exchanges

n←→ w, R←→ R′ =
α′

R
(172)

Therefore a string moving on a circle of radius R is exactly equivalent to a string moving on
a circle with radius α′/R, but with the winding modes and momenta interchanged. Under
the transformation (172)

pL −→ pL and pR −→ −pR. (173)
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Because of these transformations one therefore finds that

∂+Y
′ = ∂+Y (174)

∂−Y
′ = −∂−Y (175)

This in turn gives
∂τY

′ = ∂σY (176)

∂σY
′ = ∂τY (177)

which can be written more compactly as

∂mY
′ = εmn∂

nY = ε n
m ∂nY (178)

where

εmn =

(
0 1
−1 0

)
(179)

From (178) one sees that Y and Ỹ seem to be naturally related. In fact one can show that
the two are equivalent at the level of the action (see Appendix H), therefore confirming that
they are just two descriptions of the same physics.

5.3 Buscher-Procedure

The natural generalisation of the previous part is to see how the string action transforms
in a general curved background including an antisymmetric B-field. This will lead to a set
of transformation rules for gij and Bij first derived by Buscher [19]. Because of their great
importance the derivations of those is included here. For convenience one can choose to work
with dimensionless coordinates in the compactified dimension Y such that Y ∼ Y + 2π and
the metric GY Y = R2. In the conformal gauge the general action in the curved background
is

S =
1

π

∫
d2ξ(g +B)ij∂+X

i∂−X
j

=
1

π

∫
d2ξ
(
GY Y ∂+Y ∂−Y + EiY ∂+X

i∂−Y + EY i∂+Y ∂−X
i + Eij∂+X

i∂−X
j
) (180)

where E = g + B. This action has U(1) gauge symmetry for Y . One can therefore make
this action invariant under Y → Y + α by introducing a gauge field Am which transforms
as Am → Am − ∂mα. The covariant derivative DmY = ∂mY + Am is then invariant under
transformation. Replacing partial derivatives by covariant derivatives and introducing the
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gauge fix Fmn = ∂mAn − ∂nAm = 0 using a Lagrange multiplier Ỹ the action in light-cone
coordinates becomes [20]

Sgauged =
1

π

∫
d2ξ
[
GY Y (∂+Y + A+)(∂−Y + A−) + EiY ∂+X

i(∂−Y + A−)

+ EY i(∂+Y + A+)∂−X
i + Eij∂+X

i∂−X
j + Ỹ (∂+A− − ∂−A+)

] (181)

One can integrate the Lagrange multipliers by parts so that the gauge fields A± have algebraic
equations of motion,

From A− : ∂+X
iEiY + (∂+Y + A+)GY Y − ∂+Ỹ = 0 (182)

From A+ : ∂+X
iEY i + (∂−Y + A−)GY Y + ∂−Ỹ = 0 (183)

Rearranging and substituting these expressions for A+ and A− into (181) the action becomes

Sdual =
1

4π

∫
d2ξ
( 1

GY Y

∂+Ỹ ∂−Ỹ −
1

GY Y

EiY ∂+X
i∂−Ỹ +

1

GY Y

EY i∂+Ỹ ∂−X
i

+
(
Eij −

EiYEY j
GY Y

)
∂+X

i∂−X
j
) (184)

But this action is exactly the same as (181) under the redefinitions

GY Y →
1

GY Y

, EY i →
EY i
GY Y

, EiY → −
EiY
GY Y

, Eij → Eij −
EiYEY j
GY Y

, (185)

which are the famous Buscher rules [21].

5.4 d-Dimensional Compactification

Consider now the situation where one has a theory with d compactified dimensions Y i of unit
radius where i = 1, 2, ..., d. They are periodic and each have a winding number wi associated
with them such that

Y i(σ + 2π) = Y i(σ) + 2πwi. (186)

Their momentum along the direction of the compactified dimension is again quantised with
the integers ni. As always all states need to obey the physicality conditions of the Ln
operators. For the purpose of this argument assume that all excited states are turned off
such that all the oscillator modes vanish and the only non-trivial conditions are those for L0

and L̃0. These also have to be obeyed after any T-dual transformation and this allows one
to find the group of allowed symmetry transformations.
Starting from the L0 and L̃0 conditions in the form (168) and (167) one can add and subtract
those to find

p2L − p2R = 0 (187)
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and

p2R + p2L = 2M +
4

α′
. (188)

where N and Ñ were set to zero. Note that now p2R = piRpRi where i = 1, 2, ..., d runs over all
compactified dimensions and similarly for pL. As shown in Appendix I these two equations
imply

niw
i = 0. (189)

and

2M +
4

α′
=

2

α′2
(
gik(nk + wjBkj)(ni + wlBil) + wjwj

)
(190)

where gij is the metric and Bij the antisymmetric background field. Defining

N =

(
wi

ni

)
. (191)

both conditions can be expressed neatly in matrix form as

NTηN = 0 and NTGN =
α′2

2
(2M +

4

α′
) (192)

where

η =

(
0 1
1 0

)
, G =

(
gjl + gikBkjBil gjkBkl

gjkBkl gjl

)
(193)

The elements of these matrices are d× d matrices themselves. These conditions must always
hold. Specifically they must also hold after any T-dual transformation M has acted on N to
change the winding and momentum numbers. The r.h.s. of the both conditions in (192) are
obviously invariant under a transformation N→ N′ = MN. Invariance of the first condition
implies

(MN)TηMN = NTηN (194)

such that
MTηM = η (195)

Similarly, the second condition implies

N′TG′N′ = NTGN (196)

and therefore
G′ = (MT )−1GM−1 (197)

The first boxed equation (195) defines the group of allowed symmetry operations M which
is given by the orthogonal group O(d, d,Z). The second boxed equation (197) gives the
transformation of G under such a symmetry operation.
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5.5 The O(d, d,Z) Group

In order to understand the O(d, d,Z) group better it is convenient to write its elements as

M =

(
a b
c d

)
(198)

where a,b, c,d are d × d matrices. From the group defining property (195) one finds that
these are related to each other through

aTc + cTa = 0, bTd + dTb = 0, aTd + cTb = 1. (199)

Using those one can define three types of symmetry operators. Those are analysed for the
simplest case when gij = R2δij and Bij = 0 :

1. Basis change a ∈ GL(d,Z)
By setting b = c = 0 one obtains the O(d, d,Z) element

M =

(
a 0
0 (aT )−1

)
. (200)

These elements correspond to basis changes of the compactified lattice. They manifest
themselves because there is a mathematical redundancy in the description of the torus.
Choose for example to look at

a =

(
0 1
−1 0

)
. (201)

This matrix just interchanges the x-axis and the y-axis and therefore changes the de-
scription of the torus but leaves it physically unchanged. Calculating G′ explicitly one
can confirm that this equals G as expected.

2. Integer shift of B-field
Another type of symmetry operations can be obtained by letting b = 0 and a = 1.
From (199) this automatically sets d = 1 and requires c to be antisymmetric. Checking
explicitly how G transforms under such an operation gives

G′ =
(
MT

)−1
GM−1 =

(
1 −cT

0 1

)(
g 0
0 g−1

)(
1 0
−c 1

)
=

(
1 c
0 1

)(
g 0

−g−1c g−1

)
=

(
g− cg−1c cg−1

−g−1c g−1

) (202)

But this is exactly equal to the original expression for G (193) with B = −c. This
calculation therefore shows that one can add an antisymmetric matrix c composed
of integers to B without changing the underlying physics. This is because any such
shift changes the action by an integer multiple of 2π which leaves the path integral
invariant [22].
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3. Factorised duality Di:
The last group of symmetry operators making up the O(d, d,Z) group are

M =

(
1− ei ei

ei 1− ei

)
(203)

where ei is 0 everywhere, except for the ii component which is 1. Even though these
operators do not appear as obvious as the previous ones it can be checked that the
matrices fulfil the conditions (199). Again looking at the two dimensional square torus
case and using e0 then

M =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 . (204)

Remembering the definition of the vector N (191) one sees that applying M onto it
interchanges the winding modes into momentum modes and vice versa. Looking at the
transformation metric one finds that

G′ =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



R2 0 0 0
0 R2 0 0
0 0 R−2 0
0 0 0 R−2




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =


R−2 0 0 0

0 R2 0 0
0 0 R2 0
0 0 0 R−2


(205)

This is equal to the original G except that the radius of the first dimension was inverted.
This together with the interchanging of winding and momentum modes is therefore
exactly the generalisation of the R→ 1/R circle duality in the Y direction.

5.6 A Note on Superstrings and Mirror Symmetry

Interestingly enough superstrings turn out not to be invariant under T-duality. As hinted
at in the introduction they rather map into each other under T-duality. Specifically string
theory Type IIA on a circle of radius R maps onto Type IIB on a circle of radius α′/R.
Similarly, the two heterotic string theories can be transformed into each other.

The idea that string theories can not distinguish between two different manifolds can also
be generalised to more complicated cases and is known as mirror symmetry. This symmetry
received its name because it holds if the hodge diamonds of two Calabi-Yau-manifolds X and
Y in which the strings move are mirrors of each other. [13]
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6 Conclusion

The last section on compactification and T-duality concludes this master thesis on bosonic
string theory. After investigating the classical string in terms of its Lagrangian, equations
of motion and symmetries, it was quantised in the flat gauge. This produced two problems
relating to ordering ambiguities and the existence of ghost states. However, by imposing phys-
icality conditions arising from the stress-energy-tensor as operator equations on the Hilbert
space, ghost states could be removed from the theory in 26 dimensional spacetime and a
value for the normal ordering constant was found. The same conditions were recovered by
requiring nilpotency of the BRST operator in the BRST procedure. Here physical states
naturally appeared as as the cohomology of this operator. Investigating the string dynamics
in compactified dimensions an interesting symmetry became apparent, T-duality, which was
analysed in terms of its symmetry operators that are elements of the O(d, d,Z) group.

This is of course not the end of string theory, but rather just the beginning. In order
to make contact with the real world one has to introduce supersymmetry. This removes the
troublesome Tachyon that plagues bosonic string theory and allows the inclusion of fermions.
Requiring the theory to be anomaly free one can show that it must live in 10-dimensions
and studying dualities one can reach 11-dimensional M-theory. Here mirror symmetry and
the beautiful ADS-CFT correspondence appear. However, one of the most interesting things
about string theory is that some of the greatest ideas remain yet to be discovered. It is
very much a work in progress. And only time will tell whether string theory will go down in
history as the greatest idea that was not true or will be admired as the Theory of Everything.
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Appendix A αµn Commutation Relations

The string coordinates are given by

Xµ = xµ + α′pµτ + i

√
α′

2

∑
n6=0

1

n

(
αµne

−inξ− + α̃µne
−inξ+

)
(206)

and the conjugate momenta by

Πµ = TẊµ = Tα′pµ + T

√
α′

2

∑
n6=0

(
αµne

−inξ− + α̃µne
−inξ+

)
. (207)

Their commutation relation is given by

[Xµ(σ, τ),Πν (σ′, τ)] = iδ (σ − σ′) δµν . (208)

Multiplying the expressions for Xµ and Πµ by eimξ
−

and integrating over dξ− from 0 to 2π
one gets ∫ 2π

0

Xµeimξ
−
dξ− = i

√
2π2α′

1

m
αµm (209)

and ∫ 2π

0

Πµeimξ
−
dξ− =

√
1

2α′
αµm (210)

where T = 1
2πα′

. Therefore one can write

αµm =

∫ 2π

0

(
−im√
8π2α′

Xµ +

√
α′

2
Πµ

)
eimξ

−
dξ−. (211)

Using this one can calculate the commutator at equal τ :

[αµm, α
ν
n] =

∫ 2π

0

∫ 2π

0

dξ−dξ−′
(
−im
4π

[Xµ(σ, τ),Πν (σ′, τ)]− in

4π
[Πµ(σ, τ), Xν (σ′, τ)]

)
ei(mξ

−+nξ−′)

=

∫ 2π

0

∫ 2π

0

dξ−dξ−′
(m

4π
ηµνδ(σ − σ′)− n

4π
ηµνδ(σ − σ′)

)
ei(mξ

−+nξ−′)

=

∫ 2π

0

dξ−
(m

4π
− n

4π

)
ηµνei(m+n)ξ−

=
(m

4π
− n

4π

)
ηµν2πδm+n

= mηµνδm+n

(212)
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Appendix B Calculation of [ανm , Ln]

When n 6= 0, Ln is given by (65), so that

[ανm , Ln] =
1

2

∑
p

(
ανmα

µ
n−pα

σ
pηµσ − α

µ
n−pα

σ
pα

ν
mηµσ

)
=

1

2

∑
p

( (
αµn−pα

ν
m +mηµνδm+n−p,0

)
ασpηµσ − α

µ
n−p
(
ανmα

σ
p + pδp+m,0η

νσ
)
ηµσ

)
=

1

2

∑
p

(
mασpδm+n−p,0δ

ν
σ − pα

µ
n−pδp+m,0δ

ν
µ

)
= mανm+n.

(213)
Checking L0 given by (66) explicitly

[ανm , L0] =

[
ανm ,

1

2
α2
0 +

∞∑
p=1

α−p · αp

]

=
∞∑
p=1

(
ανmα

µ
−pα

σ
pηµσ − α

µ
−pα

σ
pα

ν
mηµσ

)
=
∞∑
p=1

(
mδm−p,0α

ν
p − p δp+m,0αν−p

)
= mανm

(214)

one finds that
[ανm , Ln] = mανm+n (215)

holds for all m and n.
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Appendix C Check Physicality Conditions for First and

Second Excited State

Here the physicality conditions

(Ln − aδn)|ψ〉 = 0 , n ≥ 0 (216)

will be applied on a general first and second excited state. For this choose to set α′ = 1
2

such
that

αµ0 |0; p〉 =

√
α′

2
pµ|0; p〉 =

pµ

2
|0; p〉 (217)

Therefore

L0|0; p〉 =
1

2
α2
0|0; p〉 =

p2

8
|0; p〉. (218)

C.1 First Excited State

Now evaluate those for a general first excited state |1〉 = ξνα
ν
−1|0; p〉.

C.1.1 (L0 − a)|1〉 = 0

(L0 − a) |1〉 = ξν
(
αν−1L0 − [αν−1, L0]− aαν−1

)
|0; p〉

= ξν

(
αν−1

α′

4
p2 + αν−1 − aαν−1

)
|0; p〉

=

(
α′

4
p2 + 1− a

)
|1〉

= 0

(219)

Therefore giving the condition

α′

4
p2 = a− 1 (220)

C.1.2 L1|1〉 = 0

L1|1〉 = L1ξνα
ν
−1|0; p〉

= ξνα
ν
0 |0; p〉 = ξ · p1

2
|0; p〉

= 0

(221)

Therefore,
ξ · p = 0. (222)

For a first excited state those are the only conditions that have to be checked explicitly as
all others are identically 0.
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C.2 Second Excited State

A general second order excited state can be defined as

|2〉 = ξµνα
µ
−1α

ν
−1|0; p〉+ ξ̃µα

µ
−2|0; p〉. (223)

C.2.1 (L0 − a)|2〉 = 0

L0|2〉 =
[
ξµνL0α

µ
−1α

ν
−1 + ξ̃µL0α

µ
−2

]
|0; p〉

=
[
ξµν(α

µ
−1L0 + αµ−1)α

ν
−1 + ξ̃µ(αµ−2L0 + 2αµ−2)

]
|0; p〉

=
[
ξµν(α

µ
−1α

ν
−1L0 + αµ−1α

ν
−1 + αµ−1α

ν
−1) + ξ̃µ(αµ−2L0 + 2αµ−2)

]
|0; p〉

=
[
ξµν(

p2

8
+ 2)αµ−1α

ν
−1 + ξ̃µ(

p2

8
+ 2)αµ−2

]
|0; p〉

= (
p2

8
+ 2)|2〉

(224)

Therefore,

(L0 − a)|2〉 = (
p2

8
+ 2− a)|2〉 = 0 (225)

gives

p2 = −8 (226)

as in the analysis of the first excited state it was shown that a = 1.

C.2.2 L1|2〉 = 0

L1|2〉 =
[
ξµνL1α

µ
−1α

ν
−1 + ξ̃µL1α

µ
−2

]
|0; p〉

=
[
ξµν(α

µ
−1L1 + αµ0 )αν−1 + ξ̃µ(αµ−2L1 + 2αµ−1)

]
|0; p〉

=
[
ξµν(α

µ
−1α

ν
−1L1 + αµ−1α

ν
0 + αν−1α

µ
0 ) + 2ξ̃µα

µ
−1

]
|0; p〉

=
[
ξµν(

pν

2
αµ−1 +

pµ

2
αν−1) + 2ξ̃µα

µ
−1

]
|0; p〉

(227)

But from the definition of the |2〉 one can see that ξµν must be symmetric, such that

L1|2〉 =
[
ξµνp

ναµ−1 + 2ξ̃µα
µ
−1

]
|0; p〉. (228)

Therefore implying that

ξµνp
ν + 2ξ̃µ = 0 (229)
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C.2.3 L2|2〉 = 0

L2|2〉 =
[
ξµνL2α

µ
−1α

ν
−1 + ξ̃µL2α

µ
−2

]
|0; p〉

=
[
ξµν(α

µ
−1L2 + αµ1 )αν−1 + ξ̃µ(αµ−2L2 + 2αµ0 )

]
|0; p〉

=
[
ξµν(α

µ
−1α

ν
−1L2 + αµ−1α

ν
1 + αν−1α

µ
1 + ηµν) + 2ξ̃µα

µ
0

]
|0; p〉

=
[
ξµνη

µν + ξ̃µp
µ
]
|0; p〉

(230)

This gives

ξµνη
µν + ξ̃µp

µ = 0 (231)
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Appendix D Calculation of the Stress-Energy Tensor

Using the formula for the world-sheet energy momentum tensor

Tαβ = − 2π
√
γ

δS

δγαβ
(232)

one can find the contribution from the ghost action to the total energy-momentum tensor.
Varying the action with respect to the world-sheet metric one finds

δSghost =
i

2π

∫
d2ξ
[
δ(
√
γ)γαβ(∇αc

µ)bβµ +
√
γ(δγαβ)(∇αc

µ)bβµ

+
√
γγαβδ(∇αc

µ)bβµ +
√
γγαβ(∇αc

µ)(δbβµ)
] (233)

Using

δ
√
γ = −1

2

√
γδγmnγ

mn (234)

and changing indices around the first term can be written as

δ(
√
γ)γαβ(∇αc

µ)bβµ = −1

2

√
γδ(γαβ)γαβγ

mn(∇mc
µ)bnµ (235)

The second term can be split up as

√
γ(δγαβ)(∇αc

µ)bβµ =
1

2

√
γ(δγαβ)

[
(∇αc

µ)bβµ + (∇βc
µ)bαµ

]
(236)

because γαβ is symmetric.
The covariant derivative can be written in terms of Christoffel as

∇αc
µ = ∂αc

µ + Γµανc
ν (237)

and the variation with respect to the Christoffel is

δΓµαν =
1

2
γµρ (∇νδγρα +∇αδγρν −∇ρδγαν) (238)

Such that the third term becomes

√
γγαβδ(∇αc

µ)bβµ =
√
γγαβcν

1

2
γµρ (∇νδγρα +∇αδγρν −∇ρδγαν) bβµ

=
1

2

√
γcνbαρ (∇νδγρα +∇αδγρν −∇ρδγαν)

=
1

2

√
γcνbαρ∇νδγρα

= −1

2

√
γcνbαβ∇νδγ

αβ

(239)
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In the last step the sign changed because δ(γραγ
αβ) = 0 such that δγρα = −γρµγβαδγµβ. The

fourth term is 0. Pulling it all together and integrating the third term by parts one arrives
at

δSghost =
i

2π

∫
d2ξ
√
γδ(γαβ)

[
−1

2
γαβγ

mn(∇mc
µ)bnµ+

1

2

[
(∇αc

µ)bβµ+(∇βc
µ)bαµ

]
+

1

2
∇ν(c

νbαβ)
]

(240)
Because bαβ is traceless

∇ν(c
νbαβ)δ(γαβ) = ∇ν(c

ν)bαβδ(γ
αβ) + cν(∇νbαβ)δ(γαβ) = cν(∇νbαβ)δ(γαβ). (241)

Using the definition of the stress-energy tensor (232), one finds the ghost contribution to the
stress-energy tensor

T
(c)
αβ = − i

2

[
(∇αc

µ)bβµ + (∇βc
µ)bαµ − γαβγmn(∇mc

µ)bnµ + cν∇ν(bαβ)
]
. (242)

In the conformal gauge the contribution to the energy-momentum tensor can be written in
light-cone coordinates as

T
(c)
++ = − i

2

[
(∂+c

µ)b+µ + (∂+c
µ)b+µ − γ++γ

mn(∂mc
µ)bnµ − cν∂ν(b++)

]
= − i

2

[
2(∂+c

+)b++ + 2(∂+c
−)b+− + c+∂+b++ + c−∂−b++

]
.

(243)
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Appendix E Ghost Contribution to Fourier Modes of

the Stress-Energy Tensor

L
(c)
n is defined as

Ln = T

∫ 2π

0

dσe−inσT−− =
1

π

∫ 2π

0

dσe−inσT−− (244)

in units where the string length l = 1√
πT

= 1. To calculate this first note that

T
(c)
−− = − i

2

[
2
(
∂−c

−) b−− + c−∂−b−−
]

= − i
2

[
2

+∞∑
m=−∞

(−im)cme
−im(τ−σ)

+∞∑
n=−∞

bne
−in(τ−σ)

+
+∞∑

m=−∞

cme
−im(τ−σ)

+∞∑
n=−∞

(−in)bne
−in(τ−σ)

]
= −1

2

∞∑
n,m=−∞

2mcmbne
−i(m+n)(τ−σ))− 1

2

+∞∑
m,n=−∞

ncmbne
−i(m+n)(τ−σ)

= −1

2

∞∑
n,m=−∞

(2m+ n)cmbne
−i(m+n)(τ−σ)

= −1

2

∞∑
m=−∞

∞∑
α=−∞

(2m+ (α−m))cmbα−me
−iα(τ−σ)

=
1

2

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−me
−iα(τ−σ).

(245)

At τ = 0,

L(c)
n =

1

π

∫ 2π

0

dσe−inσ
1

2

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−me
iασ

=
1

2π

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−m

∫ 2π

0

dσe−inσeiασ
(246)

But the integral ∫ 2π

0

dσei(α−n)σ =
[ 1

i(α− n)
ei(α−n)σ

]2π
0

= 0 (247)
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unless n = α in which case the integral is just 2π. Using this

L(c)
n =

1

2π

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−m2πδα,n

=
∞∑

m=−∞

(−m− n)cmbn−m

=
∞∑

m=−∞

(n−m)bn+mc−m

(248)

where in the last step m → −m. An overall minus arises because cm and bn anti commute
and as usual this expression has to be normal ordered.
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Appendix F Matrix Elements for Ghost Commutators

F.1 Calculation of Ac(1) = −2

For the next two calculations note that of course |0; 0〉 is a physical state and therefore
contains no ghosts. Hence, operating with ghost and anti-ghost annihilation operators cn>0

and bn>0 on it gives 0,
cn|0; 0〉 = bn|0; 0〉 = 0 for n > 0. (249)

Also from the definition of L
(c)
n (135) note that 〈0; 0|L(c)

0 |0; 0〉 = 0. Therefore using the
commutation relations (132) and (133),

Ac(1) = 〈0; 0|[L(c)
1 , L

(c)
−1]|0; 0〉 = 〈0; 0|L(c)

1 L
(c)
−1|0; 0〉

= 〈0; 0|(−c0b1 − 2c1b0)(−b−1c0 − 2b0c−1)|0; 0〉
(250)

But now terms that do not include b1 and c−1 or vice versa vanish as one can just anti-
commute the annihilation operators to the right and creation operators to the left. Hence,

Ac(1) = 〈0; 0|2c0b1b0c−1 + 2c1b0b−1c0|0; 0〉
= −2〈0; 0|c0b0b1c−1 + c1b−1b0c0|0; 0〉
= −2〈0; 0|c0b0(1− c−1b1) + (1− b−1c1)b0c0|0; 0〉
= −2〈0; 0|c0b0 + b0c0|0; 0〉 = −2

(251)

F.2 Calculation of Ac(2) = −17

Following exactly the same procedure as before,

Ac(2) = 〈0; 0|[L(c)
2 , L

(c)
−2]|0; 0〉 = 〈0; 0|L(c)

2 L
(c)
−2|0; 0〉

= 〈0; 0|(2c0b2 + 3c1b1 + 4c2b0)(2b−2c0 + 3b−1c−1 + 4b0c−2)|0; 0〉
= 〈0; 0|8c0b2b0c−2 + 9c1b1b−1c−1 + 8c2b0b−2c0|0; 0〉
= −〈0; 0|8c0b0 + 9c1b−1 + 8b0c0|0; 0〉
= −8− 9 = −17

(252)
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Appendix G Calculation of BRST Charge and Ghost

Number

G.1 BRST Charge

The BRST charge Q is defined as

Q =
1

2π

∫ 2π

0

dσ
(
JB+ + JB−

)
=

1

2π

∫ 2π

0

dσ

(
2c+(T

(α)
++ +

1

2
T

(c)
++) + 2c−(T

(α)
−− +

1

2
T

(c)
−−)

)
. (253)

For this calculation the integral will only be performed over right-moving ghosts and oscil-
lators as this shortens the algebra and one can just add an equivalent expression for the
left-moving ghosts and oscillators at the end if needed. Using the form of T

(α)
−− (48)

T
(α)
−− =

1

2

( ∑
m=−∞

L(α)
m e−imσ

− − a

)
(254)

where the a has to be included because L0 was shifted and the result for T
(c)
−− that was derived

in Appendix E,

T
(c)
−− =

1

2

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−me
−iασ− (255)

Q (at τ = 0) is given by

Q =
1

2π

∫ 2π

0

dσ

(
2
∑
n=−∞

cne
inσ

(
1

2

∑
m=−∞

L(α)
m eimσ − a

2
+

1

4

∞∑
α=−∞

∞∑
m=−∞

(−m− α)cmbα−me
iασ

))

=
1

2π

( ∑
n=−∞

cn

( ∑
m=−∞

2πδn+mL
(α)
m − 2πaδn +

1

2

∞∑
α=−∞

∞∑
m=−∞

2πδn+α(−m− α)cmbα−m

))

=
∑
n=−∞

cnL
(α)
−n +

1

2

∞∑
m,n=−∞

(−m+ n)cncmb−n−m − ac0

=
∑
n=−∞

cnL
(α)
−n −

1

2

∞∑
m,n=−∞

(m− n)c−mc−nbm+n − ac0

(256)
As usual this expression needs to be normal ordered such that

Q =
∑
n=−∞

cnL
(α)
−n −

1

2

∞∑
m,n=−∞

(m− n) : c−mc−nbm+n : −ac0. (257)
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G.2 Ghost Number

The ghost number U is defined as

U =
1

2π

∫ 2π

0

dσ (J+ + J−) =
1

2π

∫ 2π

0

dσ
(
c+b++ + c−b−−

)
(258)

As before the integral will be performed only over the right-moving ghosts as this simplifies
the calculation and one can simply add the equivalent expression for the left-moving ghosts
in the end. Inserting the mode expansions (128) and (130) (at τ = 0)

U =
1

2π

∫ 2π

0

dσc−b−−

=
1

2π

∫ 2π

0

dσ
∑
m,n

cne
inσbme

imσ

=
1

2π

∑
m,n

(2πδm+n)cnbm

=
∞∑

n=−∞

: cnb−n :

(259)

where in the last equation normal ordering was introduced by hand.
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Appendix H T-dual Actions

Starting from the compactified part of the action one can make use of the U(1) symmetry by
making a gauge transformation. Fixing the gauge and integrating out the gauge field one can
recover the T-dual counterpart of the original action, showing that both actions are really
equivalent.
The original action is given by

S =
1

2π

∫
d2ξ(∂Y )2R2 (260)

This action has U(1) gauge symmetry. One can make this action invariant under Y → Y +α
by introducing a gauge field Am which transforms as Am → Am − ∂mα. The covariant
derivative DmY = ∂mY + Am is now invariant under a transformation. Replacing partial
derivatives by covariant derivatives and introducing the gauge fix Fmn = ∂mAn − ∂nAm = 0
using a Lagrange multiplier Ỹ the action becomes

S =
1

2π

∫
d2ξ(∂mY + Am)(∂mY + Am)R2 + c

∫
d2ξỸ εmnFmn (261)

where c is a to be determined constant and ε is given by (179). Here, the Lagrange multiplier
was suggestively called Ỹ as it will be shown below that this really is the the compactified
dimension in the T-dual theory. Moving to light-cone coordinates and using integration by
parts in the second step this evaluates to

S = − 1

π

∫
d2ξ(∂+Y + A+)(∂−Y + A−)R2 − 4c

∫
d2ξỸ (∂+A− − ∂−A+)

= − 1

π

∫
d2ξ(∂+Y + A+)(∂−Y + A−)R2 + 4c

∫
d2ξ(A−∂+Ỹ − A+∂−Ỹ )

(262)

In this form A+ and A− are just auxiliary fields with algebraic equations of motion,

A+ → − 1

π
(∂−Y + A−)R2 − 4c∂−Ỹ = 0 (263)

A− → − 1

π
(∂+Y + A+)R2 + 4c∂+Ỹ = 0 (264)

Rearranging those expression and substituting them in for A+ and A− the action becomes

S = − 1

π

∫
d2ξ(

4πc

R2
∂+Ỹ )(−4πc

R2
∂−Ỹ )R2

+4c

∫
d2ξ
(

(−4πc

R2
∂−Ỹ − ∂−Y )∂+Ỹ − (

4πc

R2
∂+Ỹ − ∂+Y )∂−Ỹ

) (265)
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After recognising that ∫
d2ξ(−∂−Y ∂+Ỹ + ∂+Y ∂−Ỹ ) = 0 (266)

using integration by parts and reorganising terms the final expression for S is given by

S = −16πc2
∫
d2ξ∂+Ỹ ∂−Ỹ

1

R2
= 8πc2

∫
d2ξ(∂Ỹ )2

1

R2
(267)

Comparing this action to (260) one finds that they are identical under the T-dual transfor-
mations Ỹ = Y and R̃ = 1/R if c = 1/4π.
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Appendix I D-Dimensional Compactification Conditions

Starting from
p2L − p2R = 0 (268)

and

p2R + p2L = 2M +
4

α′
. (269)

one has to find expressions for the left and right moving momenta. The best way to do this is
to return to the level of the action. Analogues to (180) the contribution of the compactified
dimensions to the action is

S =
1

π

∫
d2ξ(gij +Bij)∂+Y

i∂−Y
j =

1

4π

∫
d2ξ(gij +Bij)(∂τ + ∂σ)Y i(∂τ − ∂σ)Y j (270)

From this equation one can calculate the canonical momentum Pi = ∂L
∂(∂τY i)

which is related
to the center of mass momentum of the string by pi = 2πPi. Therefore,

pk = 2π
∂L

∂(∂τY k)
=

1

2
(∂τ − ∂σ)Y j(gkj +Bkj) +

1

2
(∂τ + ∂σ)Y i(gik +Bik)

= Ẏ jgkj − Y ′jBkj

. (271)

But the conjugate momenta are quantised pk = nk. Using (186) one can deduce that Y i is
of the form Y i(σ) = wiσ + c where c is a constant such that Y ′i = wi. Inserting those two
relations into (271) and rearranging one finds that

Ẏ i = gik(nk + wjBkj). (272)

Now this expression can be used to find the left and right moving momenta pL and pR. From
(162)

piL =
2

α′
∂+Y

i
L =

2

α′
∂+Y

i =
1

α′
(Ẏ i + Y ′i) (273)

and likewise

piR =
1

α′
(Ẏ i − Y ′i). (274)

Therefore,

p2L − p2R = (piL + piR)(pLi − pRi) =
4

α′2
Ẏ iY ′i =

4

α′2
gik(nk + wjBkj)wi =

4

α′2
niw

i (275)

because Bij is antisymmetric. This implies

niw
i = 0 . (276)
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In contrast

p2R + p2L =
2

α′2
(Ẏ 2 + Y ′2) =

2

α′2
(
gik(nk + wjBkj)(ni + wlBil) + wjwj

)
(277)

such that the second condition is

2M +
4

α′
=

2

α′2
(
gik(nk + wjBkj)(ni + wlBil) + wjwj

)
. (278)
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