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Abstract

This project aims at learning spatial representations of spoken position descriptions for in-

door robotics. Our work is a crucial component of fully autonomous indoor assistants and

household robots that interact with humans by listening to their instructions.

Despite its huge importance for many robotics applications, to-date to the best of our

knowledge there exists no work which explicitly learns the mapping from spoken instructions

to 3D-positions. The work most related to ours is in the field of scene rendering from text de-

scription. Here some work has started to explore learning relative positions of various objects

with respect to each other given a natural language description. While this resembles our

approach we focus on learning precise positions in 3D space rather than relative positions

between objects. Other approaches try to extract spatial relation from natural language

by mapping text into formal symbolic language where individual symbols have predefined

relative positions associated with them. However, by constraining themselves to a set of

predefined relations the accuracy and the richness of positions that can be described are very

limited.

In order to predict a target position we train a neural network to predict Gaussian mixture

model parameters of a 3-dimensional probability distribution over the position. We train this

model on a dataset containing target positions around a reference cube and the correspond-

ing natural language description. By training our model object agnostic we are able to learn

meaningful distributions using just 200 training examples. We evaluate our model in the sim-

ulation of a real room. Here we demonstrate that by combining the probability distributions

obtained from several descriptions of the same position we can increase the accuracy in our

distribution. When providing up to 5 descriptions we show that we can pinpoint positions

in a room to an accuracy within 50 cm. Having evaluated the system in isolation we directly

use the position predictions to navigate a simulated drone to the predicted target positions.

Finally we have tested our approach on a small commercial drone and show that our system

can be successfully transferred to the real world.
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1 Introduction

1.1 Objective

In this thesis we address the problem of positioning a drone using a spoken language instruc-

tion. We use a drone for this project as it is highly mobile and easy to control. However, all

insights we make can be readily transferred to other robots. The main challenge in maneu-

vering a drone by telling it where to fly lies in estimating a position in space from a natural

language description. In our case an example of a typical position description is something

akin to ”Over the table, slightly to the left and further back”. This description references an

object and specifies the desired position with respect to it. By training a model on similar

descriptions we learn a mapping between spoken descriptions and 3-dimensional probability

distributions over the target position. These probability distributions can then be used by

robotic systems to perform a range of di↵erent tasks. In directly applying the predictions

from our model to navigate a real drone we bridge the gap between a theoretical procedure

to a real world implementation.

1.2 Motivation

Many realistic scenarios involving indoor assistants and household or factory robots involve

a human instructing a robot. For a human the easiest form of communicating its intentions

is by simply telling the robot in natural language what to do, for example “Put the milk into

the fridge next to the juice bottle” or “Clear the floor underneath the table”. While simple

for humans these are very challenging tasks for a robot to perform as they require a range

of highly involved skills, ranging from speech recognition, natural language processing and

reasoning to accurate localisation and object detection. Crucially the described system does

not just understand what to do but also where to do it. For this it needs to understand the

spatial information that is contained within the prepositions in combination with reference

objects (“underneath the table”,“next to the juice”). When trying to hard code these re-

lations one quickly finds that any rule based system will be highly in accurate and quickly

overwhelmed by a large number of “edge cases”. Ultimately, as so many intricacies of this

world, relative positions have to be learned, rather than predefined.

1.3 Challenges

The key challenges for understanding semantic descriptions of positions in space are the fol-

lowing:

6
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Intrinsic Imprecision: Inferring a position in 3D-space from a natural language de-

scription is di�cult due to the intrinsic imprecision in the description. Taking for example a

common preposition such as ”to the right” to refer to a position with respect to some other

object, we realise that this description usually describes a wide range of positions. While

humans are fairly good at narrowing down the intended position from the context of the

situation and a knowledge of the objects present, even they struggle. This can be seen in the

fact that often when humans describe to each other how to position themselves, they make

their best attempt and then ask a question such as “Like this?” or “Here?” to double check

if this position was indeed intended.

Ambiguity: Apart from all position descriptions being intrinsically imprecise many de-

scriptions are also ambiguous. This means that the description does not just describe a range

of positions in close vicinity of each other, but positions that are at completely di↵erent places

in space. An example of such is “Stand next to the corner of the table.” which as most tables

have four corners could imply any four di↵erent positions.

Viewpoint Dependency: Another obvious challenge when learning spatial relations is

the dependency on the viewpoint. This could be the viewpoint of the speaker, the viewpoint

of the robot or any other viewpoint described by the speaker. However, sometimes this task

is made more challenging when the speaker changes its viewpoint without explicitly saying

so. Take for example a human facing a car from the side. The description “a cow is in front

of the car” could now mean the cow is between the human and the car (using the humans

viewpoint) or the cow is next to the car 1 (when viewed from the humans viewpoint but in

front of the car when viewed from the cars viewpoint)[1].

Arbitrariness: Furthermore even for a perfectly symmetric, isolated box in an empty

room humans struggle to categorise di↵erent spatial prepositions into di↵erent regions in

3D-space [2]. This is because borders between positions such as ”behind the box” and ”left

of the box” are always fluid and somewhat arbitrary.

1.4 Approach

In order to allow a drone to successfully fly to a described position it needs to infer the

precise coordinates of the target position, know its current location and given the two know

1
The latter in this case is actually the more probable intended meaning as a car has a clear front.
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Figure 1: Schematic of the di↵erent modules interacting in our system. We use a CNN to
estimate the current pose. Simultaneously we predict a distribution over the target position
from a natural language description. We take the maximum of this distribution2 and use it
in combination with the current estimated pose to query a graph of the environment for the
next action that should be taken. We then take this action and repeat the process until we
have arrived at the desired target position. In order to refine the target position a human
can add further target descriptions at any time.

what action it should take next. Figure 1 depicts how the three components Target Position

Predictor, Localiser and Environment Graph which we use for each of these tasks interact to

achieve the overall goal.

Target Position Predictor: The challenges presented above have enforced us in our

conviction that a true solution to relative positioning has to be learned rather than prede-

fined. We therefore follow an end-to-end deep learning approach which goes straight from

a position description to a 3-dimensional probability distribution over positions. To do so

we have collected our own dataset of target positions in the vicinity of a unit cube and cor-

responding text description. The cube serves as a placeholder object whose dimensions at

test time are replaced by those of the referenced object approximated as a cuboid. During

training our network learns to predict probability distributions around the object. At test

time the predicted distributions are used to calculated the probabilities on a global grid. The

node with the highest probability is selected as the estimated target. If multiple descriptions

are specified we sequentially update the global grid by simply adding the probability contri-

butions from the individual descriptions3.

Localiser: In order to localise in space we train a ResNet based localiser on images

rendered inside a 3D model of our testing room in Blender[3]. Here we directly regress the

4-DoF camera pose (containing the 3 dimensional position as well as the orientation with

respect to the z-axis). Usually a pose is described by two additional rotational parameters

3
This means that the “probability” for a given node in the global grid can in fact be greater than 1 it is

therefore better to think of them as a general score.

8
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that encode the rotation around the x and the y-axis. However, for our purposes we limit

ourselves to the orientation around the z-axis as for a slowly moving drone in stable flight

the other two are fixed.

Environment Graph: For navigation we use a graph of our environment. This graph

consists of nodes corresponding to the positions on a regular 3-dimensional with 20 cm inter-

vals. For each position we create 12 nodes corresponding to the di↵erent possible orientations

in 30� steps. Nodes are connected to its nearest neighbours in this 4-dimensional grid by

directed edges labeled by the action required to move from the starting node to the final

node. Nodes that fall within objects are disconnected from its neighbours. In this way all

valid paths in the graph avoid the objects present in the scene. In order to use this graph

to determine what first action should be taken to move from the current pose to the target

pose we perform the following steps: First, we find the nodes closest to the starting pose and

the target pose. We then find the shortest path between the two nodes. Finally we retrieve

the action that corresponds to the first edge in our shortest path and return this action as

the final recommendation.

1.5 Contribution

The three main contributions of this thesis are the following:

• We investigate a novel approach for inferring positions from their natural language

description by directly learning probability distributions from a collection of labelled

data. To the best of our knowledge there is no existing work following a comparable

approach.

• We have created a new dataset containing an image of a scene containing a reference

object and a small cube visualising the desired target pose in combination with the

precise scene coordinates as well as the corresponding text description. This dataset

will be made available to the scientific community for future research.

• In demonstrating the feasibility of our approach we open a new avenue of future research

which can build on our work by using a larger number of training examples and more

complex models.

1.6 Outline

This thesis is divided into 6 sections, the first of which is this introduction. Section 2 gives

an overview of work that is related to this project. Section 3 explains in depth the approach

9
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we follow to tackle the problem of positioning a drone using spoken instructions. It explains

the di↵erent models we are using and how they interact to achieve the overall goal. This

is followed by details of the training procedures we have used for training those models in

Section 4. Section 5 demonstrates the range of experiments that were conducted before

arriving at the final system architecture. Finally we give concluding remarks in Section 6

and point out the potential for future work.

10
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2 Related Work

This section briefly describes existing work which is related to ours. Of great importance for

testing our system in simulations and the real world is a functioning localisation procedure.

The existing work which we make use of is described in 2.1. In 2.2 and 2.3 we briefly touch

upon previous work on encoding spatial natural language and using it for scene rendering.

Finally in 2.4 we discuss the general field of language-based navigation.

2.1 Localisation

There exist three di↵erent approaches for tackling the image localisation problem: image

retrieval and key point matching, direct camera pose regression using CNNs and scene coor-

dinate regression.

2.1.1 Image Retrieval and Key Point Matching

The first class of localisation methods compares key points in a query image to the key

points of all images in a database to find a set of closely matching candidate images. For

these candidate images the scene coordinates for the key points matching with the query

image are retrieved from sparse 3D models of the local scenes. These scene coordinates

of the matched pixels are then used to estimate the 6-DoF camera pose [4]. While this

method is accurate for images in textured environments, it can fail for less textured ones as

an insu�cient number of key points may be found for reliable matching.

2.1.2 Direct Camera Pose Regression

Another class of localisation methods ([5],[6]) uses CNNs to directly regress the 6-DoF camera

pose from singe RGB images. The outputs of the network consist of the absolute camera

position x and the orientation parameterized as a quarternion q. The network is trained by

minimizing the Euclidean loss

loss(I) = kx̂� xk2 + �

����q̂� q

kqk

����
2

. (1)

Methods based on direct pose regression are very fast at test time as they only require a single

forward pass through the network. While they work better for untextured environments than

approaches relying on key point matching, they are often very sensitive to environmental

changes as it is di�cult to simulate them during training. Despite this drawback for the
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simplicity of the training procedure we will use a CNN for directly regressing the camera

pose in this project.

2.1.3 Scene Coordinate Regression

A final class of localisation methods does not use a CNN to directly regress a camera pose,

but rather to first predict per pixel scene coordinates. In a second step a pool of pose

hypotheses are calculated from small subsets of predicted scene coordinates. For each of

the pose hypotheses a score function evaluates the consensus with all other predicted scene

coordinates. The pose prediction with the maximum score is then iteratively refined and

finally used as the estimated camera pose[7]. As pose hypothesis are sampled from small

subsets of scene coordinates they can successfully predict camera poses despite considerable

environmental changes. However, the biggest drawback of approaches using scene coordinate

regression are long training times. They also have not been shown to scale yet to large indoor

environments.

2.2 Encoding Spatial Natural Language

To this point most e↵orts in this field have focused on extracting spatial relations by mapping

text into formal symbolic languages [8]. While numerous annotation schemes and methods

for doing so have been proposed ([9],[10]), none of these o↵er the advantages of learned rep-

resentations. Similarly, work on visualising spatial descriptions has relied almost exclusively

on heavily hand engineered representations [11],[12]. In order to make use of the advantages

of learning representations in this project we devise an end-to-end deep learning approach

in which we go straight from a semantic position description to a 3-dimensional probability

distribution over a target position.

2.3 Scene Rendering from Language Descriptions.

Even though the problem of rendering 3D scenes from language description is di↵erent to

the problem of predicting a distribution over a target position from a language description,

both of them share the need for encoding spatial relations from natural language. It is

therefore worth having a look at existing work in this field. So far there have been quite a

few approaches to convert language into a 3D scene. However, just as the approaches for

encoding spatial language directly most of these are heavily rule based [14],[15] making them

unpractical for interpreting actual speech. Recent work by Ramalho et al.[13] learns to render

simple scenes containing primitive objects from text descriptions alone. They generate both

synthetic language descriptions consisting of pair wise descriptions between objects as well

12
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Figure 2: Taken from [13] : Sample outputs obtained for synthetic (top) and natural (bottom)
language scene descriptions. The respective descriptions are: “There is a pink cone to the
left of a red torus. There is a pink cone close to a purple cone. The cone is to the left of
the cone. There is a red torus to the right of a purple cone.”; “There are two objects in the
image. In the back left corner is a light green cone, about half the height of the wall. On the
right side of the image is a bright red capsule. It is about the same height as the cone, but
it is more forward in the plane of the image.”

as natural language descriptions. While results for synthetic instructions are a lot better,

they do show successes for natural instructions too (Figure 2).

2.4 Language Based Navigation

The ability to command robots in complex environments using natural language has been

a research goal for many decades [16]. While earlier work often avoided using vision cues

by relying on explicit labels for navigation goals or certain object, in recent years more and

research has focused on explicitly combining these. This seems crucial as for true mastering

of language based navigation, language and vision have to be intricately linked. Not only is

this task interesting from a research perspective as it promises insights into general questions

on multimodal representations but it also paves the way for real world applications, such as

personal assistants and in-house robots [17]. Classical tasks here are room-to-room navigation

based on a semantic description of the route by a human. While this is a challenging task,

the focus here lies on following the described path rather than reaching a very accurate

final position. If the target position is reached within a 2 m radius the trial is considered a

success. However, of course this is still a very inaccurate position and shows the need for our
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work. To a certain extent our work can be seen as a more fine-grained version of language

based navigation. One di↵erence of our work though is that rather than describing a precise

trajectory we focus on describing just the final target position.
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3 Method

In order to position a drone with voice commands by describing a target position three main

steps are necessary. As a first step we have to predict the implied position based on the

verbal instruction we receive. As a second step we have to localise in space as only if we

know our current position can we predict what actions we should take as a third step. We

outline how we achieve each of these task in the following.

3.1 Speech to Position Conversion

When trying to translate speech into a position in space it quickly becomes apparent that

a scalable and robust solution has to be learned rather than can be predefined. The reason

for this is that natural language, and especially spoken language, is simply too complex and

variable to process with a rule-based system. Additionally the intrinsic ambiguity in descrip-

tions of positions which also depend on the viewpoint of the speaker and many unspoken

assumptions add another layer of complexity to the problem. The key contribution of this

project lies in a learned procedure for predicting a 3-dimensional probability over space for a

target position given a semantic description of the position with respect to a reference object.

3.1.1 Data Acquisition

In order to collect data for training a target predictor we create a cube of unit scale in

Blender. We then sample a position on a 9⇥ 9⇥ 9 grid around the cube where the distance

between neighboring nodes is half the side length of the cube. For three selected training

examples the position of the target is visualized as a small green cube in Figure 3. We use

further visualisations of the scene to fully understand the position and then describe it with

respect to the cube from a fixed view point. An example of such a description is “Behind

the cube, but on the right side and higher up”. While in general position descriptions

with spoken language always have a certain uncertainty associated with them, they can also

imply inherently di↵erent positions, e.g. the “Next to the corner of the cube” may imply

any one of 8 di↵erent positions. While our model is well capable with dealing with such

ambiguous descriptions our training data only consists of position descriptions that imply a

single position. We transcribe the speech input to text using the Microsoft speech API [18].

The creation of one training pair including time for thinking of an appropriate description

and speaking takes about 30s. In this manner we collect 250 pairs of positions with respect

to the cube and corresponding target descriptions. After the data collection we correct for

errors in the transcription by listening to the recordings of sentences which were transcribed

falsely.

15
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Figure 3: Examples of position visualisations (green cube) and their semantic description
with respect to a reference cube (blue).

3.1.2 Model

Our prediction model comprises of three components: a fastText word vector model [19], a

Long Short-Term Memory cell [20] and a Mixture Density Network [21].

1. fastText embedding

The fastText word vector model embeds individual words into a 300-dimensional fea-

ture space. It was trained as a Skipgram-model on a huge text corpus during which

it has learned to embed similar words as similar feature representations. Its network

weights are kept constant in our training procedure.

2. LSTM Cell

We sequentially feed the word embeddings we receive from the fastText word vector

model through an LSTM. In this way we maintain information about the order of the

words in the sentence description while at the same time allowing the network to learn

which words in the description are most relevant. We use the hidden representation we

receive after feeding all N word embeddings through the LSTM as an encoding of our

description which is passed on to the Mixture Density Network.

3. Mixture Density Network

The Mixture Density Network uses the encoded description to predict a multi-modal

Gaussian probability distribution over positions in space. It consists of a Categorical

16
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Figure 4: Target Predictor Model: After receiving a target position description we embed
its words individually into a 300 dimensional feature space using a fastText word vector
model. These embeddings are then sequentially used as an input to an LSTM cell. The final
hidden representation containing information about all N words in the description is passed
as an input to a Mixture Density Network[21]. Here one component predicts mean µi and
the diagonal standard deviation �i for each mode in the target distribution while a second
component predicts mixture weights ⇧i. The network is trained end-to-end by minimising
the negative log likelihood of the target positions. Note that the weights of the fastText word
vector model are kept fixed during the training procedure.

17
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Network for predicting mixture components ⇧i and a Diagonal Mode network for pre-

dicting 3-dimensional mean and standard deviation µi and �i for each mode i. For

our experiments we choose to use 4 modes. This would allows us to predict truly

multi-modal distributions corresponding to ambiguous descriptions such as “next to”.

Furthermore even for learning single mode distributions it may be helpful to allow for

multiple modes as this may avoid predicting extreme standard deviations.

The Categorical Network consists of a single 300-dimensional hidden layer with ELU

activation function given by

ELU(x) = max(0, x) +min(0, (exp(x)� 1)) (2)

and outputs the log probabilities for the individual modes which are then exponentiated

and normalised to 1.

Similarly the Mode Network has a single hidden layer with 300-nodes and uses an

ELU activation function. It outputs the 3-dimensional mean and the logarithm of the

standard deviation for each of the mode components. The loss used to minimise during

training is given by the negative log likelihood,

Loss = �logP = �
4X

i=1

⇧iG(xTarget;µi,�i) = �
4X

i=1

⇧i(2⇡)
� 3

2 det(⌃i)
� 1

2 e�
1
2 (x�µi)

>⌃�1
i (x�µi)

(3)

where ⌃i = diagonal(�i1, �i2, �i3).

3.1.3 Test Time

The reason why all our training data is provided just for an abstract cube rather than physical

objects is that by describing positions object agnostic we are quickly able to collect su�cient

amount of training data to apply our system in real world scenarios with many di↵erent

objects. We choose a cube rather than some other primitive object like a sphere or a cylinder

as many objects especially in indoor environments have rectangular shapes.

At test time we use a map of our environment which contains the important objects param-

eterised as cuboids. In order to make a prediction we search the text input for a known

object in the room and replace it by the word “cube” as our network was trained on position

descriptions using the word “cube”. The mean of the predictions the networks make for each

mode are then shifted to the center of the anchor object xobject and the standard deviations

are scaled by the object dimensions sobject. Therefore the final probability distribution over
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the target position xTarget reads as

P (xTarget) =
4X

i=1

⇧iG(xTarget;µ
pred
i + x

object,�pred
i � s

object) , (4)

where � implies element-wise multiplication.

In order to ensure that target positions can be predicted precisely we allow a user to describe

a single position with multiple descriptions. For each description we predict the mixture

density parameters and combine them with the parameters of the referenced anchor object

to calculate the probabilities for each node on a tight 3D world grid. We repeat this for

each description and then simply add the probabilities on the world grid. This makes our

procedure robust to individual miss-predictions and allows for greater precision in the final

position.

3.2 Localisation

A crucial component in our system is a reliable procedure for localisation. Continuous lo-

calisation becomes necessary as the model for the dynamics of the drone is complex. Air

currents and imprecision when executing commands cause the drone to deviate from the

intended path. Small imprecision in orientation and position quickly accumulate to signifi-

cant errors and have to be mitigated for by continuous localisation. This stands in contrast

to most ground robots which by tracking the revolutions of their wheels can calculate their

current position precisely, and makes our problem more challenging.

In order to develop a cheap and scalable solution we rely solely on single camera images.

While using more advanced sensing, such as depth sensors, simplifies the problem of locali-

sation (and particularly object avoidance), the drones that are equipped with such are more

expensive. We attack the problem of localisation by training a deep neural network with a

Resnet18 backbone to directly regress the 4-DoF pose (x, y, z, ✓) from a single RGB-image.

3.2.1 Data Acquisition

In order to collect data for training our model we follow two di↵erent approaches:

• Matterport 3D Scanner

For the first approach we use a dense 3D model with textures of our target rooms.

This model was created using the Matterport Pro 2 Camera. The Matterport Pro

2 creates panoramic images by rotating around a fixed tripod. Images taken from

di↵erent position, in combination with their depth information captured by infrared
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(a)

(b)

(c)

Figure 5: a) Matterport Pro 2 and b) Theta 360. c) We estimate the global transformation
for converting points in the sfm coordinate system obtained from images of the Theta 360 to
our room coordinates by aligning reconstructed points with primitive objects in our room.

sensors, are automatically combined to textured 3D meshes of the environment. We

load these meshes into Blender and render 60.000 images corresponding to random

camera positions and random orientations around the vertical. These images are used

for training the localisation network we use for testing our system in the simulated test

room.

• Ricoh Theta 360 camera

For the second approach we use a Ricoh Theta 360 camera and create a video of

traversing a grid in our test rooms. While we can combine the images from the video

into a point-cloud using structure-from-motion, the point-cloud we get is not dense

enough to render directly from it (as we are able to do with the model obtained with

the Matterport Pro 2). We therefore simply use structure-from-motion to determine the

world coordinates and orientation of the camera for each frame in the video. By aligning

the predicted point cloud from the structure of motion algorithm with primitive models

of the objects in our room (see Figure 5 c) we find the global transformation between

the two coordinate systems. We then crop smaller images with a horizontal field of

view of 55 degree (corresponding to that of the drone we are using for final evaluation)

from the 360 images and use these as our training data for our pose network.

3.2.2 Model Architecture

For localisation we train a convolutional neural network which uses a ResNet18 based encoder

to encode our images into a 512-dimensional feature representation. We pass these features

through 2 fully connected layers with 128 and 4 nodes respectively. A ReLU activation
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Figure 6: Localisation Network: We use a deep neural network with a ResNet18 backbone
to directly regress the 4-DoF poses from single RGB-images. The 3-D scene coordinates of
the position of the camera are used directly whereas the orientation around the z-axis is
normalised to the range from 0 to 1. The loss is given by the Euclidean loss for the position
plus a linear loss contribution from the orientation which takes the cyclic property of angles
into account.

function is applied to all hidden layers. The output of the last layer is made up of the

room coordinates of the pose X = (x, y, z) as well as the orientation around the vertical (✓)

normalised to the interval between 0 and 1. We only need a single number to describe the

orientation of our drone as we only take pictures when hovering. This means that roll and

pitch of the drone are fixed and only yaw, which is the rotation around the z-axis changes.

We use just this single angle rather than all 3 Euler angles (or any other parameterisation of

the orientation, e.g. quarternions) as this simplifies the learning procedure for the network

as distinct features will always be detected at similar orientations.

When training the network we apply a Euclidean loss to the position and a linear loss to the

normalised orientation angle (taking into account that angles are cyclic) such that our loss

is given by

Loss = ↵Lpos + (1� ↵)Lang

= ↵
3X

i=1

(XTarget
i �Xi)

2 + (1� ↵)min(|✓ � ✓Target|, |✓ + 1� ✓Target|)

where we choose ↵ = 1
2 empirically.
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Figure 7: Top-down view of a small extract of the Environment Graph used for navigation:
Nodes in blue all correspond to the same position in space with di↵erent orientations. Ro-
tations (blue) connect these nodes to their nearest neighbours. A “Forward” action (green)
connects neighbouring positions at the same height with each other for those nodes whose
orientation is aligned with the direction of the translation in space.

3.3 Navigation

For navigation purposes we use a bi-directional graph of our environment (see Figure 7). This

graph is constructed as follows: We discretise the parameterised room into a set of evenly

spaced nodes separated by 20 cm in the x, y and z direction from neighbouring nodes. For

each position in space we create 12 nodes corresponding to 12 di↵erent orientations around

the vertical axis in 30� steps. Nodes at the same position are connected to their neighbours

with one unit of rotation more or less by edges. Neighbouring positions are only connected for

those nodes that have the correct orientation which corresponds to the translation between

the two positions. This ensures that the drone will always face the way it is flying which

is desirable for most real-world applications as it unsafe to fly in a direction from which we

do not receive a live image from. In the horizontal we also only allow for movements along

the 4 principal direction (i.e. positive and negative x-direction and positive and negative

y-direction) as this prevents the graph from getting too big leading to overly long search

times. In the vertical nodes are connected to their equivalent one layer higher and one layer

lower. Each edge is labelled by the action that is required to fly from its starting node to
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Figure 8: Visualisation of the interplay of the di↵erent components in our system to determine
what action the drone should take in order to reach a described target position.

the final node. When using this graph for navigation between a starting and a target pose

we first find the nearest nodes in the graph. We then use Dijkstra’s algorithm [22] to find

a shortest path between these two nodes. This shortest path contains a sequence of nodes

along it which are connected by edges labelled with the actions required to follow it. We

follow those actions until we localise in space again and repeat the process.

3.4 Full System

Figure 8 shows how the di↵erent components described above come together to predict what

actions a drone should take to navigate to a described target position. Starting from the

top let corner a position description is recorded and transcribed into text. It is searched for

an anchor object to which it refers which is stored and whose word is replaced by the word

“cube” in the description. The description is then inputted into the Target Position Predictor

which returns Gaussian mixture model parameters for the probability distribution over the

target position. The predicted means are shifted to the center of the reference object and the

standard deviations are scaled by the dimensions of the cuboid approximating the reference
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object. Using these transformed parameters the probability contribution to the global grid are

calculated. The position of the node in the updated global grid with the highest probability is

returned. This process is repeated N times with di↵erent position descriptions which in turn

update the global probabilities and lead to changing target positions4. Simultaneously at

each time step we localise by inputting the real or simulated drone view into our localisation

network which returns the predicted pose. Together with the predicted target pose we query

the graph of the environment for the shortest path between the nodes closest to the two

poses. We find the action corresponding to the first edge in the shortest path and execute it

after which the process is repeated.

4
Target positions are simply converted to target poses by appending a fixed orientation
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4 Experimental Setup

The solution we propose for a drone to understand the descriptions of positions in a room

and to successfully navigate to them requires training several neural networks on di↵erent

datasets. This section gives a concise overview over these datasets and details on the training

procedures of the networks. It is concluded by introducing key metrics which we use to assess

the performance of the networks in Section 5.

4.1 Datasets

We use two kinds of datasets for training our networks: image-pose pairs for training our

localisation networks and position-description pairs for training the Target Position Predictor.

4.1.1 Localisation

For localisation we have used two datasets. One of them is from a living room for which we

had a dense textured mesh which was obtained with the Matterport Pro 2. The section of

the living room that is used for experiments is 5.0 m long, 3.2 m wide and 2.4 m high. It

contains 10 labelled objects for which we approximated bounding cuboids in Blender. We use

the textured mesh of this room to render images corresponding to 60, 000 randomly sampled

poses. We use 50, 000 of these for training and reserve 10, 000 for validation. The images are

100 pixel in width and height and were rendered with a camera of 50� FoV in the horizontal

and vertical direction.

The second dataset we use for localisation was obtained from 360� videos that were shot

using the Ricoh Theta 360. We took 4 videos corresponding to the 4 main orientations5 of a

bedroom which we traversed in a grid at 3 di↵erent heights. We use structure-from-motion

to compute the camera position and orientation for every 50th frame in the video. This

leaves us with 600 images from all 4 main orientations from which we crop 128⇥ 128 images

in 3� intervals between �45� and +45� around the center. This ensures that the person

holding the camera is never in the crops. In this manner we generate 18, 000 images and

their corresponding poses of which 16, 000 are used for training and 2, 000 for validation.

During training we make small random adjustments to brightness, contrast and saturation

to avoid overfitting. Similarly we perform slight random zooming of our images in order to

simulate small imprecision in our procedure of determining the FoV of the drone.

5
Even though we use a 360

�
camera the orientation still matters as parts of the images will be occluded

by the person taking the video
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4.1.2 Position Descriptions

We use Blender to randomly sample 250 positions around a unit cube. These positions are

then described by a user with respect to the cube. We transcribe the audio files using the

Microsoft Speech Recognition API. Errors in the transcriptions are manually corrected for.

200 position-description pairs are used for training, while 50 are reserved for validation.

4.2 Network Training Details

This subsection provides the details of the training procedures for the localisation network

and the target predictor network.

4.2.1 Localisation Network

We train the localisation network in the simulated room by randomly batching the 50, 000

images into mini-batches of size 25. We use an Adam [23] optimiser with learning rate 0.0001.

The network is trained for 950 epochs at which point we observe an increase in the validation

loss and stop the training. We use the same batch-size, optimiser and learning rate for the

localisation network in the real room. As before we employ early stopping and stop the

training procedure after 820 epochs.

4.2.2 Target Position Predictor

When training the Target Position Predictor we only have 200 position-description pairs and

therefore reduce the batch size to 5. Just as for the localisation networks we use the Adam

optimiser, here with a learning rate of 0.005. We train the network for 340 epochs until

we see an increase in the validation loss and note a deterioration of the predictions for the

validation examples.

4.3 Evaluation Protocol

In order to evaluate the localisation network at training and test time we compute the

Euclidean distance between the position parameters of the predicted pose and the true pose.

We also compute the di↵erence in orientation around the vertical axis, taking into account

that angles are cyclic. Quantifying the performance of the Target Position Predictor is

more challenging and requires the introduction of selected key metrics which will be used

throughout Section 5. They are the following:

• Euclidean-distance from the most likely prediction to the target

For this metric we simply find the node on the 9 ⇥ 9 ⇥ 9 grid around the cube with
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the highest probability under the predicted distribution and compute the Euclidean

distance to the target,

DML(Ppred,XT ) =
q
(XT �Xnmax)

2 (5)

where

nmax = argmax
n2N

P (n) . (6)

Here N is the set of all nodes in the global grid and Ppred is the predicted probability

distribution by the Target Position Predictor.

• Relative probability at the target

We define this quantity to be the value of the predicted probability density function at

the target normalised by the maximum value of the probability density function,

prelative(P,XT ) =
P (XT )

P (Xnmax)
. (7)

Therefore rather than evaluating how good the maximum prediction itself is we evaluate

how likely the target is under the predicted distribution.

• Minimum Euclidean distance to the target from the n maximum predictions.

Here we consider the k nodes with the highest probability and find the minimum

distance of any of these nodes to the target,

Dk(Ppred,XT ) = min
n2Nmaxk

p
(XT �Xn)2 (8)

where Nmaxk is the set of k most likely nodes under P .

While the first two metrics defined above are important to consider they reduce the predicted

probability distributions to single point predictions. This is problematic as we are interested

in assessing the probability distribution as a whole. A common way to assess a predicted

distribution is to compute the Kullbach-Leibler divergence to a target distribution. However,

in this case we only have single draws from our target distribution which makes a direct

comparison impossible. We therefore introduce the third metric which aims to preserve

information about the shape of the distribution.
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5 Experiments

This section gives an overview over the most important experiments that were conducted

for this report. The first set of experiments focuses on the model for converting speech to

a position. The results for these will be analysed in detail as they constitute the key novel

contribution. The second set of experiments details how the di↵erent subsystems outlined

above perform together for full navigation to a verbally described position in a simulated

room. Finally we show our results when testing our system in the real world.

5.1 Speech to Position Conversion

We have investigated various potential loss functions as well as network architectures before

reaching our final model. The results for these will be explained in the following.

5.1.1 Loss Ablation Study

For training our network we investigated 3 di↵erent loss functions:

• Cross-Entropy

When considering the speech-to-position problem on a fixed grid, one can treat it as a

N-class classification problem where every position description has to be classified as

belonging to 1 of the 729 nodes in the 3-dimensional grid. Looking at the problem in

this way using categorical cross-entropy appears as a natural loss function,

Loss = �
729X

n=1

tnlog(pn) (9)

where tn is a one-hot encoding of the target node and pn is the output for node n.

• Binary Cross-Entropy

One of the dangers of following the approach above is that the prediction obtained for

the classification may be overconfident and focused only on a single node which is too

narrow for our purposes. We therefore investigate using binary cross-entropy where for

each target location we have two nodes in the final layer of our networks which are

normalised by a softmax function such that they correspond to the probabilities of the

location being the target or not,

Loss = �
 

729X

n=1

c0 tnlog(pn,0) + (1� tn)log(pn,1)

!
. (10)
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In Equation 10 c0 is a constant which was empirically set to 10 to speed up the training

procedure6. By training our network on this loss, at test time we allow it to predict

multiple target locations with high probability which is crucial for imprecise descriptions

of positions.

• Mixture Density Network

While both losses above allow us to train our network, they lack an encoding of spatial

proximity i.e. the notion that if two nodes are close to each other their probabilities of

being the target are likely similar. However, this property is very crucial for successfully

generalising to unseen position descriptions and for producing smooth and meaningful

predictions which reflect the uncertainty in many descriptions. We encode this property

by assuming that basically all position descriptions can be well approximated by a

mixture of Gaussians. Therefore rather than predicting node probabilities directly we

predict Gaussian mixture parameters. We train our model on the loss given by Equation

3 which ensures that the probability of obtaining the observed targets is maximised.

Before comparing the networks trained on the di↵erent losses quantitatively it is insightful

to compare individual predictions for an unseen position description (Figure 9). The main

point to note is that while both the model that was trained on the cross-entropy loss (left)

as well as the model trained on the binary cross-entropy loss (middle) do have their high

probability predictions on the left side of the cube and behind it, they are very scattered

and not smooth, which emphasises the need for hard coding the notion of spatial proximity

into the model. The mixture density model on the other hand produces more accurate

predictions with a reasonable variance. All the information contained in the description (“to

the left”,“further back”,“on the same height as the back”) is reflected in the prediction.

Comparing the 3 di↵erent networks quantitatively in terms of the distance of the maxi-

mum prediction from the target (see Table 1) we notice that also just considering its maximum

prediction mixture density networks outperform networks with individual node predictions

trained on cross entropy and binary cross-entropy losses on unseen data. On seen training

data the latter two perform significantly better than the mixture density network. However,

this simply demonstrates that they over-fit faster on the training data.

Comparing the results for the relative probability at the target one can see that the model

trained on binary cross-entropy has higher relative probability at the target than the mixture

density network. While this may seem surprising at first, we note that we perform a slightly

unfair comparison as for the model that was trained on binary cross-entropy predictions

6
Otherwise the contribution of the huge number of positions which are not the target dominate initial

phases of training and the network simply learns to predict no target at all.
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Figure 9: A comparison of the predictions obtained from a network that was trained on
the cross-entropy loss (left column), on the binary cross-entropy loss (middle column) and
by maximising the target probability for a Mixture Density Network (right column). The
second and third row show the front and top-down view of the same scene as row 1. The
view point and view direction of the simulated speaker is marked by the brown arrow. The
intended position of the target is marked by the red dot (shifted by 0.1 in all directions for
the purpose of better visualisation). The unseen position description is “To the left of the
cube further back on the same height as the center”.
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Figure 10: Comparison of the minimum distance of the top n predicted nodes to the target
as a function of n for models trained on cross-entropy and binary cross-entropy and for a
mixture density network. All distances plotted are the averages of the distances obtained by
applying the models on 50 validation examples.

across all nodes are not normalised (as they are for the cross-entropy model or the mixture

density network which outputs a normalised probability distribution). Therefore in theory

the model trained on binary cross-entropy can predict every single node in the grid of being

the target with probability 1 which leads to a definite relative probability of 1 at the target

and explains the relatively high probability at the target which we observe.

Finally we can analyse how the distance of the predicted target to the true target change

as we consider not just the maximum prediction but the maximum n predictions. Here we

notice that when a maximum of 20 predictions are considered the average distance to the

target is almost identical for the three models. However, as more predictions are considered

the average distance for mixture density network reduces a lot faster. This emphasises that

while both models trained on cross-entropy and binary cross entropy have high probability

predictions close to the target, they do not cover the space around the target as closely as

the mixture density network does.

5.1.2 Architecture Ablation Study

In terms of the architecture of our network we focused on two key principles: how single words

are embedded and how individual word embeddings are combined. For embedding single
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Average Dist of
max prediction

from
target(Training)

Average Dist of
max prediction
from target
(Validation)

Relative
probability at

target
(Training)

Relative
probability at

target
(Validation)

Cross Entropy 0.5281 1.3280 0.8338 0.1344
Binary Cross

Entropy
0.5214 1.2637 0.9623 0.2603

Mixture Density
Network

0.8420 1.0875 0.4208 0.1755

Table 1: Quantitative comparison of the networks trained on cross-entropy and binary cross-
entropy and a mixture density network in the terms of the key metrics identified in Section
4.3.

words we compared learning word embeddings from scratch versus using using a pre-trained

word embedder. When combining the sequences of words we investigated simply taking the

average of individual embeddings and obtaining a joint representation by sequentially feeding

the words into a LSTM-cell.

The 4 di↵erent models we obtain are compared in terms of the key metrics detailed above

in Table 2. Focusing on the validation data we notice that there is a huge improvement

from those models that learn word embeddings from scratch compared to those that use

pre-trained ones. This was in fact expected as it is very di�cult to learn meaningful word

embeddings from only 200 training examples with roughly 15 words each. Nevertheless it is

good to verify that for our problem which is highly limited in the vocabulary it uses, and

may therefore learn very di↵erent word embeddings to a word embedder trained on a huge

corpus of text, it is important to use a pre-trained word embedder.

Interestingly we also note an improvement in terms of the distance from the maximum

prediction to the target when using a LSTM-cell to combine individual word embeddings as

opposed to simply normalising the embeddings and taking the average. We did not expect

this in advance as we assumed that for our position descriptions which follow very simple

sentence structures and do not have any negations the position of the word in the sentence

was irrelevant. In hindsight the reason why we assume combining word embeddings with an

LSTM works slightly better is that we noticed that for some examples in our training data

the very first attributes in a description are often the most relevant ones for the position.

Following attributes are likely less important as humans automatically put the information

they deem most descriptive of the position at the start.

Similarly to before we can compare the di↵erent model architectures in terms of the

minimum distance to the target when considering the top n predictions (see Figure 11).

Doing this we find again that both models using pre-trained embeddings strongly outperform

32



Candidate ID: G708 Precise Positioning of a Drone using Spoken Language Commands

Average Dist of
max prediction
from target (m)

(Training)

Average Dist of
max prediction
from target
(Validation)

Relative
probability at

target
(Training)

Relative
probability at

target
(Validation)

Learn
embedding +

average
1.4495 1.8094 0.3673 0.1561

Learn
embedding +

LSTM
1.3439 1.8569 0.4056 0.1756

Fasttext
embedding +
normalised
average

0.8420 1.0875 0.4208 0.1755

Fasttext
embedding +

LSTM
0.4132 0.9650 0.6467 0.1531

Table 2: A comparison of 4 di↵erent model architectures in terms of the average distance
from the maximum prediction to the target and the relative probability at the target for
training and validation data.

Figure 11: The minimum distance of the top n predictions on unseen validation data for
di↵erent network architectures.
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those that do not. We also see that when learning the embeddings from scratch one obtains

better results by simply combining individual embeddings by averaging them rather than

feeding them through an LSTM. This is probably because it is di�cult for the network to

learn embeddings and LSTM weights simultaneously when training only on a very limited

number of examples.

5.1.3 Query combination

While we have shown above that by choosing the right model architecture and the right loss

functions one can make good position predictions on single descriptions, it is important to

realise that in order to build a robust system one has to combine predictions from multiple

descriptions. Partially this is because our model which was trained on a very limited number

of examples is still inaccurate in its predictions. However, more importantly one notices again

and again the inherent ambiguity in trying to describe positions with spoken languages.

Therefore in order to achieve a higher precision in the predicted poses we combine the

predictions for multiple descriptions of the same position. We do so by normalising the

predictions such that the maximum predicted node has a probability of 1 and then simply

add the values on the global grid.

Figure 12 visualises this process for 3 descriptions of the same target pose (shown in black).

Note that the viewpoint for all descriptions is the same as the one in Figure 9. In the first

row we can see the contribution of the sentence “Above the chess board Table and slightly in

front” and in the second row the current total distribution (which are identical for the first

description). We note that while the predicted positions are indeed in front of the referenced

object (red) they cover a range of vertical positions (some of which are in fact not “above” the

table). The current maximum prediction is shown in red and is 97 cm away from the target

position. We aim to refine the predicted position by providing another description, this time

referencing a di↵erent object. The third row shows the prediction we obtain from this and

we note that the maximum prediction of just this contribution is in fact very close to the

target. However, when adding the normalised contribution to the total distribution we note

that the maximum prediction still remains unchanged. We therefore need to specify a further

description (row 5) and see that this changes the maximum total prediction to a position

closer to the target, 46 cm away (row 6). This example illustrates how we can sequentially

combine multiple position descriptions to obtain more accurate position predictions.

In order to quantitatively evaluate our approach we create 6 di↵erent scenarios for which

we each describe a randomly chosen position with 5 di↵erent descriptions. Sometimes these

descriptions reference di↵erent objects, at other times they simply rephrase a description for

the same object. As before we sequentially combine the probability contributions for each of
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Description:	“Above	the	chess	board	table	slightly	in	front“

Last	
Contribution:

Total:

Last	
Contribution:

Total:

Last	
Contribution:

Total:

Description:		“Behind	the	chair	on	the	left	side	as	high	as	the	top“

Description:		“In	front	of	the	shelf	with	the	nespresso box	in	the	centre“

Figure 12: Visualisation of the proposed query combination. Each row shows the same probability

distributions from 3 di↵erent view points. The intended target position is marked in black and

the current maximum probability prediction is marked in red. From the top down we visualise the

evolution of the global probability distribution (rows 2,4 and 6) after sequentially adding further

position descriptions. Rows 1,3 and 5 show the probability contribution from the latest description.

The object that is referenced in the descriptions is shown in red in the individual contribution.
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Figure 13: Quantitative Results for Query Combination: We visualise the evolution of the
distance between the predicted target position and the actual target position as an increasing
number of target descriptions is provided.

the descriptions in the scenario and monitor the distance between the predicted target and

the actual target (see Figure 13). Here we can observe that as we increase the number of

description on average the distance between the target position and the predicted position

is reduced from 1 m to 0.5 m. This is in fact a very good result considering that all of the

individual descriptions by itself are still very ambiguous.

5.2 Simulation

We test our system in a simulation of the room which we have captured using the Matterport

3D scanner. For each of the the 6 scenarios described in Section 5.1.3 we randomly sample

an allowed starting pose outside of the present objects. In real-time we then render an image

corresponding to this pose in Blender which we use as input for our localisation network.

At the same time we predict the current target position from the speech input we provide
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live. We then query the graph of the environment for the shortest path between the node

closest to the estimated current pose and the node closest to the current target pose7. The

shortest path we receive is a sequence of nodes which are connected by directed edges labelled

by the action required to move from the starting node to the target node. We now simply

perform the action which corresponds to the first edge in the shortest path and disregard all

others. We repeat this process for each time step until our predicted position and the target

position correspond to the same node in the graph. At this point we add a further target

description which updates the total probability distribution of the target and may lead to

a new predicted target position. In the case of a new target we navigate to it as described

above. Otherwise we simply provide further target descriptions, up to a maximum number

of 5. After each description we record the ground truth distance of the simulated drone to

the true target position.

We can see a visualisation of the trajectories for one of the scenarios in Figure 14. It

shows the trajectories of the drone after it has received the first (top), the first two (mid-

dle) and the first three target position descriptions. Note that from the final positions of

the trajectories we can see that the drone is closer to the target after the second position

description. This is because the new contribution (Figure 15, row 2) has moved the overall

target position closer to the actual target. We can also see this from Figure 13 as for scenario

4 the di↵erence between the predicted target and the actual target decreases as we add the

second description. In comparison after 3 descriptions the drone finishes at the same position

as where it finished after two (left of the pink cubes in the bottom image of Figure 14). This

is because adding a third description has not changed the overall predicted target as the new

probability contribution only have negligible values around the actual target. Examining this

latest contribution closer (Figure 15) we can see that while the prediction accurately reflects

the description “higher up” it does not reflect the preposition “behind”. The reason why

the drone moved at all even though the target position has not change is a small imprecision

during the localisation for which it is then able to correct for by returning to the starting

point.

In Figure 16 we visualise the evolution of the distance between the simulated drone

position and the actual target position for each of the 6 scenarios. Note that the distances

observed correspond very closely to those of the predicted targets to the actual targets (Figure

13). This shows that in the simulation the localisation procedure we use works reliably. In

order to make our simulation more realistic we add random noise to our predicted poses. This

7
We convert the predicted target position to a target pose with which we can query the graph by simply

specifying our target orientation to face in the positive x-direction.
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Figure 14: Visualisation of the trajectories obtained for scenario 4. The first image from the
top shows the trajectory after the first description of the target position (yellow cubes). The
starting point of the drone is at the center of the left most cube and the target is visualised
by the green sphere. The image in the middle shows the trajectory of the drone after the
second description was provided (red) and the image at the bottom shows the trajectory
after the third description (pink).
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Figure 15: Visualisation of the individual probability contributions of the first 3 descriptions
of scenario 4
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Figure 16: Simulation Results: We show the distance between the simulated final position
of the drone and the target position after a varying number of position descriptions were
provided.
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noise free
position x, y, z±

unif(0, 0.2)
orientation

✓ ± unif(0, 30�)
combined

Distance to the
target (m)

0.49 0.548 0.59 0.56

Table 3: Simulation results with simulated noise in the pose prediction. The distances
reported are the averages over all six scenarios after all 5 target descriptions have been
provided.

simulates the less precise pose predictions we get in the real world when the drone images

di↵er slightly from the training images due to varying lighting conditions and other external

factors. Table 3 shows the results we obtain when adding di↵erent levels of noise to the pose

prediction. We can see that adding noise of the order of 20 cm to the position and 30� to

the orientation does not a↵ect the final distances we observe much which is promising for

applying our system in the real world.

5.3 Real World

After extensively testing our system in simulations we evaluate it in the real world using the

DJI Ryze Tello drone. The drone contains a single RGB camera in the front as well as depth

sensors at the bottom and a bottom facing camera which it uses for flight stability and for

holding a position. We connect to the drone via WiFi for periodically sending the next action

to take. All speech recording runs through the computer as the drone is not equipped with

a microphone. Just as we did for the simulation we evaluate the performance of the system

by testing it on a series of test scenarios. Table 4 shows the final di↵erences in position we

estimated for each of the 5 scenarios. The final distances we observe range from 0.5 m to 0.9

m with an average distance of 0.62 m. These distances are similar to the results we obtained

in the simulation which is very positive as it shows that we can e↵ectively train our system

on simulated data and still apply it in the real world. Figure 17 and 18 show images that

were taken from videos of the drone performing the first and the second scenario.
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Figure 17: Visualisation real world scenario 1: The images taken are screenshots from a video
filming the drone while following the commands of the first scenario in the real world. The
images correspond to the position at the start (top), midway through flight (middle) and the
final position (bottom) of the drone. The intended target is visualised by the green dot. See
Table 4 for the position descriptions. 42
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Figure 18: Visualisation real world scenario 2: The bottom image shows the final position
of the drone. The target position is marked by the green dot. See Table 4 for the position
descriptions.
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Sce-
nario

Descriptions
Estimated

final distance
to target (m)

1
“Above the chess board table slightly in front”

0.5“Behind the chair on the left side as high as the top”
“In front of the shelf with the Nespresso box8in the center”

2
“To the right of the armchair on central height”

0.9
“To the left of the chess board table”

3
“Underneath the side table”

0.5“Behind the bench but on the left on central height”
“Behind the box with newspapers”

4
“Above the printer”

0.6
“To the left of the couch in the back on central height”

5
“To the right of the computer screen on central height”

0.6“To the right of the table higher up”
“To the left of the couch on central height”

Table 4: Results for real world scenarios: The distances quoted are the estimated final
distances of the drone after it was provided with all the position descriptions.

6 Conclusion and Future Work

In this project we developed a system that uses human descriptions of positions to navigate

a drone to the desired position. In order to do so we made a first attempt at learning spa-

tial representations of spoken position descriptions which can be applied more generally to

indoor robotics. The first step in our procedure was to create a dataset containing a posi-

tion around a reference object and the semantic description of that position. We used this

dataset to compare and contrast the results we obtained for di↵erent model architectures

and loss functions. We demonstrated that using a pre-trained word embedding is crucial,

while preserving information about the order of the words in the description by using an

LSTM can give an extra increase in accuracy. Furthermore we show that directly predicting

position probabilities is sub-optimal and one can achieve smoother, more accurate and more

meaningful prediction by predicting parameters of a Gaussian Mixture Model. We show that

by combining predictions made from individual position descriptions the combined distribu-

tion we obtain is more accurate in estimating an often ambiguous position and resilient to

individual miss-predictions.

Having evaluated the system in isolation we proceeded to test it in simulated scenarios. Here

we directly used the predictions made by the model to navigate a simulated drone to the pre-

dicted target positions and evaluate the performance. When specifying up to 5 descriptions

8
Note that “shelf with the Nespresso box” was treated as a single object.
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of the target position we achieve an average accuracy in the final position of 0.5 m. Finally

we have tested our approach on a small commercial drone and show that our system can be

successfully transferred to the real world.

The achievements we have made so far can be extended in numerous ways:

• Viewpoint Dependency: An important extension of the current system for deploy-

ment to real robots interacting with humans is to enable a view point dependency for

all position descriptions. This viewpoint should be either the position of the speaker

(which has to be estimated) or the position of the robot itself, depending on preference.

This viewpoint dependency can be easily achieved by simply collecting more training

data from random speaker positions and using this position as an input to the fully

connected layers of the network alongside the sentence encoding.

• Ambiguity: Secondly, we would like to explore the ambiguity of many position de-

scriptions further. Prepositions such as “next to” or “nearby” can be used to describe

many potential target positions. While preliminary experiments have shown that due

to its multi-modality our model can learn these ambiguous descriptions too, we would

like to investigate this in more detail.

• Multiple Reference Objects: Additionally we are planning on training our model

on multiple reference objects to allow handling of a wider class of prepositions, e.g.

“between” and “in the middle of”.

• Richer Model: Finally, we would like to explore more complex and powerful network

architectures to improve the accuracy in our predictions.

45



Candidate ID: G708 Precise Positioning of a Drone using Spoken Language Commands

References

[1] Daniel Haun, C. Rapold, G. Janzen, and S. Levinson. Plasticity of human spatial

cognition: spatial language and cognition covary across cultures. Cognition, 119(1):70–

80, April 2011.

[2] Alexander Kranjec, Gary Lupyan, and Anjan Chatterjee. Categorical biases in perceiving

spatial relations. PLOS ONE, 9(5):1–9, 05 2014.

[3] Blender Online Community. Blender - a 3D modelling and rendering package. Blender

Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[4] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From

coarse to fine: Robust hierarchical localization at large scale, 2018.

[5] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Convolutional networks for real-

time 6-dof camera relocalization. CoRR, abs/1505.07427, 2015.

[6] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression

with deep learning, 2017.

[7] Eric Brachmann and Carsten Rother. Learning less is more - 6d camera localization via

3d surface regression, 2017.

[8] Parisa Kordjamshidi, Paolo Frasconi, Martijn Van Otterlo, Marie-Francine Moens, and

Luc De Raedt. Relational learning for spatial relation extraction from natural language.

In Proceedings of the 21st International Conference on Inductive Logic Programming,

ILP’11, page 204–220, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] Robert Ross John A. Bateman, Joana Hois and Thora Tenbrink. A linguistic ontology

of space for natural language processing. Artificial Intelligence, 174:1027 – 1071, 2010.

[10] Masoud Rouhizadeh, Richard Sproat, and Bob Coyne. Collecting spatial information

for locations in text-to-scene systems. 04 2012.

[11] Angel Chang, Manolis Savva, and Christopher D. Manning. Learning spatial knowledge

for text to 3D scene generation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 2028–2038, Doha, Qatar,

October 2014. Association for Computational Linguistics.

[12] Kaveh Hassani and Won-Sook Lee. Visualizing natural language descriptions: A survey.

CoRR, abs/1607.00623, 2016.

46



Candidate ID: G708 Precise Positioning of a Drone using Spoken Language Commands
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